If k+1 = sec^2theta (1+sintheta) (1-sintheta) , than find the value of K
Answers
Answered by
2
Answer: k=0
Step-by-step explanation:
If k+1 = sec^2theta (1+sintheta) (1-sintheta) , than find the value of K
⇒ k+1=Sec²θ(1+Sinθ)(1-Sinθ)
⇒k+1=Sec²θ(1-Sin²θ)
⇒k+1 = Sec²θ*Cos²θ
⇒k+1=1
⇒k=1-1
⇒k=0
Urwa5:
Thank you so much but i have a question.
⇒cosθ*Secθ = 1
Sqarring on both sides
⇒(Cosθ*Secθ)² = 1
⇒Cos²θ*Sec²θ = 1
Answered by
1
Answer:
k = 0
Step-by-step explanation:
k + 1 = sec²Ф (1 + sinФ)(1 - sinФ)
k + 1 = sec²Ф (1² - sin²Ф) [ ∵ (a + b) (a - b) = a² - b²]
k + 1 = sec²Ф (1 - sin²Ф)
k + 1 = sec²Ф × cos²Ф [∵ 1- sin²Ф = cos²Ф]
k + 1 = (1/cos²Ф) × cos²Ф [ ∴ secФ = 1/cosФ]
k + 1 = 1
k = 0
Similar questions