Math, asked by Urwa5, 1 year ago

If k+1 = sec^2theta (1+sintheta) (1-sintheta) , than find the value of K

Answers

Answered by kessrinivas25
2

Answer: k=0

Step-by-step explanation:

If k+1 = sec^2theta (1+sintheta) (1-sintheta) , than find the value of K

⇒ k+1=Sec²θ(1+Sinθ)(1-Sinθ)

⇒k+1=Sec²θ(1-Sin²θ)

⇒k+1 = Sec²θ*Cos²θ

⇒k+1=1

⇒k=1-1

⇒k=0


Urwa5: Thank you so much but i have a question.
Urwa5: How is sec^2theta*cos^2theta = 1?
kessrinivas25: ⇒cosθ = 1/Secθ
⇒cosθ*Secθ = 1
Sqarring on both sides
⇒(Cosθ*Secθ)² = 1
⇒Cos²θ*Sec²θ = 1
kessrinivas25: I hope you understood.
Urwa5: Yup and thnxx
kessrinivas25: Your Welcome :)
Answered by nickkaushiknick
1

Answer:

k = 0

Step-by-step explanation:

k + 1 = sec²Ф (1 + sinФ)(1 - sinФ)

k + 1 = sec²Ф (1² - sin²Ф)                 [ ∵ (a + b) (a - b) = a² - b²]

k + 1 = sec²Ф (1 - sin²Ф)

k + 1 = sec²Ф × cos²Ф                    [∵ 1- sin²Ф = cos²Ф]

k + 1 = (1/cos²Ф) × cos²Ф                [ ∴ secФ = 1/cosФ]

k + 1 = 1

k = 0


Urwa5: Thnxx
nickkaushiknick: pleasure :)
Similar questions