Math, asked by dikeshwardk, 11 months ago

If k-2, 2k + 1 and 6k +3 are in G.P. find k

Answers

Answered by BrainlyPopularman
5

Answer:

 {(2k + 1)}^{2}  = (k - 2)(6k + 3) \\  \\ 4 {k}^{2}  + 1 + 4k = 6 {k}^{2}  - 9k - 6 \\  \\  - 2 { k}^{2}  + 13k + 7 = 0 \\  \\ 2 {k}^{2}  - 13k - 7 = 0 \\  \\ 2 {k}^{2}  - 14k + k - 7 = 0 \\  \\ 2k(k - 7) + 1(k - 7) = 0 \\  \\ (2k + 1)(k - 7) = 0 \\  \\ k = 7 \:  \:  \:  \:  \:  \:  \:  \: k =  -  \frac{1}{2}

Answered by pinquancaro
5

The value of k is 7 or -0.5.

Step-by-step explanation:

Given : If  k-2, 2k + 1 and 6k +3 are in G.P.

To find : The value of k ?

Solution :

If a,b,c are in G.P then b^2=ac.

On comparing, a=k-2, b=2k + 1,c=6k +3

Substitute in the formula,

(2k+1)^2=(k-2)(6k+3)\\\\4k^2+1+4k=6k^2+3k-12k-6\\\\6k^2-4k^2+3k-12k-4k-6-1=0\\\\2k^2-13k-7=0\\

Applying quadratic formula, x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Here, a=2, b=-13 and c=-7

x=\frac{-(-13)\pm\sqrt{(-13)^2-4(2)(-7)}}{2(2)}\\\\x=\frac{13\pm\sqrt{225}}{4}\\\\x=\frac{13\pm15}{4}\\\\x=\frac{13+15}{4},\frac{13-15}{4}\\\\x=7,-0.5

Therefore, the value of k is 7 or -0.5.

#Learn more

If k,2k+2,3k+3,......are G.P then find common ratio of G.P

https://brainly.in/question/4784933

Similar questions