Math, asked by kasarapuhansi09, 11 hours ago

if k=2(sin15/cos75+cot78/tan12)-1 then k=​

Answers

Answered by smriti3131
3
  • hope you like it dear
  • ple mark me brain list ple
  • drop me some thanks also
Attachments:
Answered by MrImpeccable
39

ANSWER:

Given:

  • k = 2(sin 15/cos 75 + cot 78/tan 12) - 1

To Find:

  • Value of k

Solution:

We are given that,

\implies k=2\left(\dfrac{\sin15}{\cos75}+\dfrac{\cot78}{\tan12}\right)-1

We know that,

\hookrightarrow \sin\theta=\cos(90-\theta)

And,

\hookrightarrow \cot\theta=\tan(90-\theta)

So,

\implies k=2\left(\dfrac{\sin15}{\cos75}+\dfrac{\cot78}{\tan12}\right)-1

\implies k=2\left(\dfrac{\cos(90-15)}{\cos75}+\dfrac{\tan(90-78)}{\tan12}\right)-1

\implies k=2\left(\dfrac{\cos15}{\cos75}+\dfrac{\tan12}{\tan12}\right)-1

\implies k=2(1+1)-1

\implies k=2(2)-1

\implies k=4-1

\implies\bf k=3

Formula Used:

  • \hookrightarrow \sin\theta=\cos(90-\theta)
  • \hookrightarrow \cot\theta=\tan(90-\theta)

Learn More:

 \boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

 \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}

Similar questions