Math, asked by Yshnu926, 9 months ago

If k ,2k-1 and 2k+1 are the three consecutive of ap find the value of k

Answers

Answered by amitkumar44481
30

AnsWer :

k = 5.

SolutioN :

Let's

  • The three consecutive of AP be :
  • a , b , c.

 \tt  \dagger \:  \:  \:  \:  \: a  = k .

 \tt  \dagger \:  \:  \:  \:  \: b  = 2k     -   1.

 \tt  \dagger \:  \:  \:  \:  \: c  = 2k  + 1.

We have, Formula :

 \tt  \dagger \:  \:  \:  \:  \: d = b - a

 \tt  \dagger \:  \:  \:  \:  \: d = c - b

 \tt  \dagger \:  \:  \:  \:  \: b =  \dfrac{a + c}{2}

 \tt   : \implies  2(k - 1) =  \dfrac{k + 2k + 1}{2}

 \tt   : \implies  2(2k - 2 )=  k + 2k + 1

 \tt   : \implies  4k - 4=  k + 2k + 1

 \tt   : \implies  4k - 4=  3k + 1.

 \tt   : \implies  k= 1 + 4

 \tt   : \implies  k= 5.

Therefore, the value of k is 5.

\rule{200}2

Formula Use :

 \tt  \dagger \:  \:  \:  \:  \: b =  \dfrac{a + c}{2}

Similar questions