If k = 4 sin 3X - 5 , then k ∈
Answers
Answered by
0
Step-by-step explanation:
sin9x+sin3x=0,x∈[0,2π]
⇒3sin3x−4sin
3
3x+sin3x=0
⇒4sin3x−4sin
3
3x=0
⇒4sin3x(1−sin
2
3x)=0
⇒sin3x=0,(1−sin
2
3x)=0
⇒sin3x=0,sin
2
3x=1
⇒3x=nπ,n∈I or 3x=kπ+
2
π
,k∈I
⇒x=
3
nπ
,x=
3
kπ
+
6
π
,k∈I
For n=0,1,2,3,4,5,6 we have
x=0,
3
π
,
3
2π
,π,
3
4π
,
3
5π
,2π
For k=0,1,2,3,4,5 we have
x=
6
π
,
3
π
+
6
π
,
3
2π
+
6
π
,π+
6
π
,
3
4π
+
6
π
,
3
5π
+
6
π
or x=
6
π
,
6
2π
+
6
π
,
6
4π
+
6
π
,
6
6π+π
,
6
8π
+
6
π
,
6
10π
+
6
π
or x=
6
π
,
6
3π
,
6
5π
,
6
7π
,
6
9π
,
6
11π
or x=
6
π
,
2
π
,
6
5π
,
6
7π
,
2
3π
,
6
11π
Thus, the solutions are {0,
3
π
,
3
2π
,π,
3
4π
,
3
5π
,2π,
6
π
,
2
π
,
6
5π
,
6
7π
,
2
3π
,
6
11π
}
or {0,
2
π
,
6
π
,
3
π
,
3
2π
,
2
3π
,π,
3
4π
,
3
5π
,
6
5π
,
6
7π
,
6
11π
,2π}
=13 solutions
Similar questions