If k=[√(44+24√2)+√(11-6√2)]/(√2+1)
Answers
Answered by
4
Answer:
k = ±3 or ±(8√2 - 7)
Step-by-step explanation:
If k=[√(44+24√2)+√(11-6√2)]/(√2+1)
44 + 24√2
= 8 + 36 + 24√2
= (2√2)² + 6² + 2(2√2)6
= (6 + 2√2)²
=> [√(44+24√2) = ±(6 + 2√2)
11-6√2
= 9 + 2 - 6√2
= 3² + √2² - 2(3)(√2)
= ( 3 - √2)²
=> √(11-6√2) = ± (3 - √2)
=> Numerator = ±(6 + 2√2) ± (3 - √2)
= ±(9 + √2) or ±(3 + 3√2) or
±(3 + 3√2)/(√2+1)) = ±3
=> k = ±3
or ±(9 + √2)/(√2+1))
= ±(9 + √2)/(√2+1)) * (√2-1/)/(√2-1)
= ±(9√2 - 9 + 2 - √2)
= ±(8√2 - 7)
Similar questions
Math,
6 months ago
Math,
6 months ago
Social Sciences,
11 months ago
Political Science,
11 months ago
Hindi,
1 year ago