Math, asked by bhatiashabbir3045, 8 months ago

If k is ratio of zeroes of the polynomial 4x^(2)-5x-3 then the value of (k+(1)/(k))^(-2) is

Answers

Answered by rajeevr06
4

Answer:

 4{x}^{2}  - 5x - 3 = 0

let zeros are

 \alpha  \: and \:  \beta

so

 \frac{ \alpha }{ \beta }  = k \:  \: and \:  \alpha  +  \beta  =  \frac{5}{4} and \:  \alpha  \beta  =  \frac{ - 3}{4}

 \frac{1}{k}  =  \frac{ \beta }{ \alpha }

so

(k +  \frac{1}{k} ) {}^{ - 2}  = ( \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha } ) {}^{ - 2}  =

( \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta } ) {}^{ - 2}  = ( \frac{ \alpha  \beta }{( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta } ) {}^{2}  =

( \frac{ \frac{ - 3}{4} }{ \frac{5}{4}  {}^{2}   +  \frac{6}{4} } ) {}^{2}  = ( \frac{ - 3}{4}  \times  \frac{16}{49} ) {}^{2}  = ( -  \frac{ 12}{49} ) {}^{2}

 =  \frac{144}{2401}  \:  \:  \: ans.

Mark BRAINLIEST if you think it is helpful. thanks

Similar questions