Math, asked by khushi266456, 9 months ago

if K is ratio of zeros of polynomial 4 x square - 5 x minus 3 then the value of k + 1 upon K to the power minus 2 is​

Answers

Answered by SonalRamteke
6

Answer:

The required answer is in attachment.

Step-by-step explanation:

if like my writing then marks as a brain list

Attachments:
Answered by jitumahi435
0

We need to recall the following formulas.

  • Quadratic formula: The roots of the quadratic equation ax^{2} +bx+c=0 are x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}

Given:

K is the ratio of the zeros of a polynomial 4x^2-5x-3=0.

Using the quadratic formula, we get

The zeros of the polynomial 4x^2-5x-3=0 are as follows.

x=\frac{-(-5)\pm\sqrt{(-5)^2-4(4)(-3)} }{2(4)}

x=\frac{5\pm\sqrt{25+48} }{8}

x=\frac{5\pm\sqrt{73} }{8}

Thus, the zeros of the polynomial are \frac{5+\sqrt{73} }{8} and \frac{5-\sqrt{73} }{8} .

The ratio of the zeros is,

K=\frac{\frac{5+\sqrt{73} }{8} }{\frac{5-\sqrt{73} }{8} }

K=\frac{5+\sqrt{73} }{5-\sqrt{73}} }

K=\frac{(5+\sqrt{73})(5+\sqrt{73}) }{(5-\sqrt{73})(5+\sqrt{73}) }

K=\frac{25+10\sqrt{73}+73  }{25-73}

K=\frac{98+10\sqrt{73} }{-48}

K=\frac{49+5\sqrt{73} }{-24}

Now,

K+\frac{1}{K^{-2}}=K+K^2

K+\frac{1}{K^{-2}}=\frac{49+5\sqrt{73} }{-24} +(\frac{49+5\sqrt{73} }{-24} )^2

K+\frac{1}{K^{-2}}=\frac{49+5\sqrt{73} }{-24} +\frac{2113+245\sqrt{73} }{288}

K+\frac{1}{K^{-2}}=\frac{1525+185\sqrt{73} }{288}

Similar questions