Math, asked by shekharshukla1815, 11 months ago

If k1,k2,k3.........kn are odd natural no.then the remainder when k1 ^2+k2^2+.....kn^2 is divided by 4 is always equal to

Answers

Answered by MaheswariS
23

Answer:

when {k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2 is divided by 4, the remainder is k_1+k_2+k_3+......+k_n

Step-by-step explanation:

Given:

k_1,k_2,k_3..........k_n are odd natrual numbers.

Then,

k_1=2x_1+1

k_2=2x_2+1

k_3=2x_3+1

.

.

.

k_n=2x_n+1

where x_1,x_2.......x_n are integers

Now,

{k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2

=(2x_1+1)^2+(2x_2+1)^2+(2x_3+1)^2+..........+(2x_n+1)^2

=(4{x_1}^2+2x_1+1)+(4{x_2}^2+2x_2+1)+(4{x_3}^2+2x_3+1)+..........+(4{x_n}^2+2x_n+1)

=4[{x_1}^2+{x_2}^2+{x_3}^2+......+{x_n}^2]+[(2x_1+1)+(2x_2+1)+(2x_3+1)+......+(2x_n+1)]

=4[{x_1}^2+{x_2}^2+{x_3}^2+......+{x_n}^2]+[k_1+k_2+k_3+......+k_n]

Thus ,we have

{k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2=4[{x_1}^2+{x_2}^2+{x_3}^2+......+{x_n}^2]+[k_1+k_2+k_3+......+k_n]

Hence , when {k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2 is divided by 4, the remainder is k_1+k_2+k_3+......+k_n

Similar questions