Math, asked by divyanshsharma17abd, 10 months ago

If k1, k2, k3, ....., kn are odd natural numbers, then the remainder when   is divided by 4, is always equal to

Answers

Answered by tdrue5ufugyisjt
0

Answer:

Answer:

when {k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2k

1

2

+k

2

2

+k

3

2

+..........+k

n

2

is divided by 4, the remainder is k_1+k_2+k_3+......+k_nk

1

+k

2

+k

3

+......+k

n

Step-by-step explanation:

Given:

k_1,k_2,k_3..........k_nk

1

,k

2

,k

3

..........k

n

are odd natrual numbers.

Then,

k_1=2x_1+1k

1

=2x

1

+1

k_2=2x_2+1k

2

=2x

2

+1

k_3=2x_3+1k

3

=2x

3

+1

.

.

.

k_n=2x_n+1k

n

=2x

n

+1

where x_1,x_2.......x_nx

1

,x

2

.......x

n

are integers

Now,

{k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2k

1

2

+k

2

2

+k

3

2

+..........+k

n

2

=(2x_1+1)^2+(2x_2+1)^2+(2x_3+1)^2+..........+(2x_n+1)^2=(2x

1

+1)

2

+(2x

2

+1)

2

+(2x

3

+1)

2

+..........+(2x

n

+1)

2

=(4{x_1}^2+2x_1+1)+(4{x_2}^2+2x_2+1)+(4{x_3}^2+2x_3+1)+..........+(4{x_n}^2+2x_n+1)=(4x

1

2

+2x

1

+1)+(4x

2

2

+2x

2

+1)+(4x

3

2

+2x

3

+1)+..........+(4x

n

2

+2x

n

+1)

=4[{x_1}^2+{x_2}^2+{x_3}^2+......+{x_n}^2]+[(2x_1+1)+(2x_2+1)+(2x_3+1)+......+(2x_n+1)]=4[x

1

2

+x

2

2

+x

3

2

+......+x

n

2

]+[(2x

1

+1)+(2x

2

+1)+(2x

3

+1)+......+(2x

n

+1)]

=4[{x_1}^2+{x_2}^2+{x_3}^2+......+{x_n}^2]+[k_1+k_2+k_3+......+k_n]=4[x

1

2

+x

2

2

+x

3

2

+......+x

n

2

]+[k

1

+k

2

+k

3

+......+k

n

]

Thus ,we have

{k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2=4[{x_1}^2+{x_2}^2+{x_3}^2+......+{x_n}^2]+[k_1+k_2+k_3+......+k_n]k

1

2

+k

2

2

+k

3

2

+..........+k

n

2

=4[x

1

2

+x

2

2

+x

3

2

+......+x

n

2

]+[k

1

+k

2

+k

3

+......+k

n

]

Hence , when {k_1}^2+{k_2}^2+{k_3}^2+..........+{k_n}^2k

1

2

+k

2

2

+k

3

2

+..........+k

n

2

is divided by 4, the remainder is k_1+k_2+k_3+......+k_nk

1

+k

2

+k

3

+......+k

n

Answered by ramyashivannageetha
7

Answer:

Step-by-step explanation:

refer both attachment for complete solution

Attachments:
Similar questions