Physics, asked by snehuuu9p0, 1 year ago

if kinetic energy K depends on velocity V acceleration a and density P of an object find the expression for K​

Answers

Answered by nirman95
0

To express Kinetic Energy K in terms of velocity, acceleration and density of an object:

Let Kinetic energy be dependent on these physical quantities as follows:

 \therefore \: K \:  \propto \:  {v}^{x}  \times  {a}^{y}  \times  { \rho}^{z}

  =  > \:  \bigg \{ M {L}^{2} {T}^{ - 2}   \bigg \}\:  \propto \:  { \bigg \{L{T}^{ - 1}  \bigg \}}^{x}  \times  { \bigg \{ L{T}^{ - 2} \bigg \}}^{y}  \times  { \bigg \{M{L}^{ - 3}  \bigg \}}^{z}

  =  > \:  \bigg \{ M {L}^{2} {T}^{ - 2}   \bigg \}\:  \propto \:    { \bigg \{ M\bigg \}}^{z}  \times  { \bigg \{ L\bigg \}}^{x + y - 3z}  \times  { \bigg \{ T\bigg \}}^{ - x - 2y}

Comparing the powers on both sides , we get the following Equations ;

1) \: z = 1 \\ 2) \: x + y - 3z = 2 \\  3) \:  - x - 2y =  - 2

Solving these Equations , we get ;

1) \: z = 1 \\ 2) \: y =  - 3 \\ 3)x = 8

So putting the values ;

 \therefore \: K \:  \propto \:  {v}^{8}  \times  {a}^{ - 3}  \times  { \rho}^{1}

Putting a constant "c" ;

 =  > \: K \:   = c \bigg( \:  {v}^{8}  \times  {a}^{ - 3}  \times  { \rho}^{1}  \bigg)

So, final answer is:

 \boxed{ \sf{ \bold{ \red{\: K \:   = c \bigg( \:  {v}^{8}  \times  {a}^{ - 3}  \times  { \rho}^{1}  \bigg)}}}}

Similar questions