Math, asked by shaikhfatima907, 8 months ago

if knowing then tell​

Attachments:

Answers

Answered by Bidikha
0

Given -

 {3}^{x}  =  {5}^{y}  =  {(75)}^{z}

To show -

z =  \frac{xy}{2x + y}

Solution -

Let, </p><p>\:  {3}^{x}  =  {5}^{y}  =  {(75)}^{z}  = k

 {3}^{x}  = k

3 =  {k}^{ \frac{1}{x} } ........1)

and,

 {5}^{y}  = k

5 =  {k}^{ \frac{1}{y} } ......2)

and,

=> {(75)}^{z}  = k

=>75 = k {}^{ \frac{1}{z} }

=>25 \times 3 =  {k}^{ \frac{1}{z} }

=> {(5)}^{2}  \times 3 =  {k}^{ \frac{1}{z} }

=> { {k}^({ \frac{1}{y} )} }^{2}  \times  {k}^{ \frac{1}{x} }  =  {k}^{ \frac{1}{z} } (by \: 1 \: and \: 2)

=> {k}^{ \frac{2}{y} }  \times  {k}^{ \frac{1}{x} }  =  {k}^{ \frac{1}{z} }

=> {k}^{ \frac{2}{y}  +  \frac{1}{x} }  =  {k}^{ \frac{1}{z} }

=> {k}^{ \frac{2x + y}{xy} }  =  {k}^{ \frac{1}{z} }

=> \frac{2x + y}{xy}  =  \frac{1}{z}

By cross multiplying,

=>z(2x + y) = xy

=>z =  \frac{xy}{2x + y}

Shown

Similar questions