Math, asked by mousami88, 1 year ago

If kx+2y-1=0 and 6x-4y+2=0 are identical
lines, then determine k.

Answers

Answered by harendrachoubay
10

The value of k = - 3

Step-by-step explanation:

The given linear polynomials are:

kx + 2y - 1 = 0

and  6x - 4y + 2 = 0

Here, a_{1}=k,[tex]b_{1}=2and c_{1}=-1

a_{2}=6,b_{2}=-4and c_{2}=2

To find, the value of k = ?

The condition for identical lines,

\dfrac{a_{1}}{a_{2}}=\dfrac{b_{1}}{b_{2}}=\dfrac{c_{1}}{c_{2}}

\dfrac{k}{6}=\dfrac{2}{-4}=\dfrac{-1}{2}

⇒  \dfrac{k}{6}=\dfrac{2}{-4} or  \dfrac{k}{6}=\dfrac{-1}{2}

⇒ k = - 3 or, k = - 3

Hence, the value of k = - 3

Similar questions