Math, asked by bhoyermounika203, 9 months ago

If kx+y+1=0 & x-y+2=0 are conjugate lines w.r.to the circle x2+y2+4x-4y-1=0 then k=?

Answers

Answered by Swarup1998
1

The two lines are

\quad\quad kx+y+1=0\quad.....(1)

\quad\quad x-y+2=0\quad.....(2)

Let (x_{1},\:y_{1}) be the pole of the second straight line. Then the equation of the polar of the point (x_{1},\:y_{1}) with respect to the circle x^{2}+y^{2}+4x-4y-1=0 is

\quad xx_{1}+yy_{1}+2(x+x_{1})-2(y+y_{1})-1=0

\Rightarrow xx_{1}+yy_{1}+2x+2x_{1}-2y-2y_{1}-1=0

\Rightarrow (x_{1}+2)x+(y_{1}-2)y+(2x_{1}-2y_{1}-1)=0\quad.....(3)

Here (3) no. straight line is identical with the straight line (2). Then

\quad\frac{x_{1}+2}{1}=\frac{y_{1}-2}{-1}=\frac{2x_{1}-2y_{1}-1}{2}

So, \frac{x_{1}+2}{1}=\frac{2x_{1}-2y_{1}-1}{2}

\Rightarrow 2x_{1}+4=2x_{1}-2y_{1}-1

\Rightarrow 2y_{1}=-5

\Rightarrow \color{blue}y_{1}-\frac{5}{2}

and \frac{y_{1}-2}{-1}=\frac{2x_{1}-y_{1}-1}{2}

\Rightarrow -2y_{1}+4=2x_{1}-2y_{1}-1

\Rightarrow 2x_{1}=5

\Rightarrow \color{blue}x=\frac{5}{2}

In order that two straight lines be conjugate, the pole \left(\frac{5}{2},\:-\frac{5}{2}\right) of the second straight line lies on the first line.

Hence, k\left(\frac{5}{2}\right)+\left(-\frac{5}{2}\right)+2=0

\Rightarrow \frac{5k}{2}+\frac{5}{2}+1=0

\Rightarrow \frac{5k}{2}=\frac{3}{2}

\Rightarrow \color{blue}{k=\frac{3}{5}}

Answer: The value of k is \frac{3}{5}.

Similar questions