Math, asked by devanshsingh066, 1 month ago

If l 1 = 10.54, l 2 = 10.53, l 3 = 10.52 and l 4 = 10.58.
Find (i) Mean Absolute error (ii) Percentage error​

Answers

Answered by rahizrahi
0

Answer:

if 1=10 junction then the 10=1000

Answered by shoaib61
0

Answer:

DE∣∣AB, then ΔCDE∼ΔABC

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:AC

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD =

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BC

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 =

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2 +16x+12=4x

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2 +16x+12=4x 2

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2 +16x+12=4x 2 +22x

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2 +16x+12=4x 2 +22x12=6x⟹

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2 +16x+12=4x 2 +22x12=6x⟹ x=2

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2 +16x+12=4x 2 +22x12=6x⟹ x=2

DE∣∣AB, then ΔCDE∼ΔABCBy property of similar triangles:ACCD = BCCE ⟹ 4x+22x+3 = 4x+4x Cross-multiplying:(x+3)(4x+4)=x(4x+22)⟹4x 2 +16x+12=4x 2 +22x12=6x⟹ x=2

Step-by-step explanation:

hope it helps you mark as me brainlist drop thanks please

Similar questions