Math, asked by Pavithramutte, 3 months ago

If l=125, f1=20, f0=13, f2=14 and h=20, then mode of the grouped data is​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{In a grouped data,}

\mathsf{l=125,\;f_1=20,\;f_0=13,\;f_2=14\;and\;h=20}

\textbf{To find:}

\textsf{Mode of the grouped data}

\textbf{Solution:}

\underline{\textsf{Formula used:}}

\textsf{Mode of the grouped data is}

\boxed{\mathsf{Mode=l+\left(\dfrac{f_1-f_0}{2f_1-f_0-f_2}\right){\times}h}}

\textsf{using the above formula,}

\mathsf{Mode=l+\left(\dfrac{f_1-f_0}{2f_1-f_0-f_2}\right){\times}h}

\mathsf{Mode=125+\left(\dfrac{20-13}{2(20)-13-14}\right){\times}20}

\mathsf{Mode=125+\left(\dfrac{7}{40-27}\right){\times}20}

\mathsf{Mode=125+\left(\dfrac{7}{13}\right){\times}20}

\mathsf{Mode=125+\dfrac{140}{13}}

\mathsf{Mode=125+10.8}

\implies\boxed{\mathsf{Mode=135.8}}

\textbf{Find more:}

Find the mode of sin 0°, cos 90°, tan 45º, sin 90°, cot 45°, sec 60°, cosec 30°.​

https://brainly.in/question/14336067

Similar questions