Physics, asked by vanshikavikal448, 1 month ago

If L , C and R denote the inductance, capacitance and resistance respectively. The dimensional formula for C²LR is :
 \bold{a) \:  \:[M{L}^{ - 2} {T}^{ - 2}{ I }^{0} ] }
 \bold{b) \:  \:[{M }^{0} {L }^{0} {T }^{3}{ I }^{0} ] }
 \bold{c) \:  \: [{M}^{ - 1}{ L}^{ - 2} {T }^{6} {I}^{2} ]}
 \bold{ b) \:  \:[{M}^{0} {L }^{0} {T }^{2} {I }^{0} ] }

Answers

Answered by UtsavPlayz
3

 \bold{b) \: \:[{M }^{0} {L }^{0} {T }^{3}{ I }^{0} ] }

We know,

 \sf{[L]=[M{L}^{2}{T}^{-2}{I}^{-2}]}

 \sf{[C]=[{M}^{-1}{L}^{-2}{T}^{4}{I}^{2}]}

 \sf{[R]=[M{L}^{2}{T}^{-3}{I}^{-2}]}

So, the dimensional formula for

 \sf{[{C}^{2}LR]}

 \sf{=[{({M}^{-1}{L}^{-2}{T}^{4}{I}^{2})}^{2}(M{L}^{2}{T}^{-2}{I}^{-2})(M{L}^{2}{T}^{-3}{I}^{-2})] }

 \sf{=[({M}^{-2}{L}^{-4}{T}^{8}{I}^{4})(M{L}^{2}{T}^{-2}{I}^{-2})(M{L}^{2}{T}^{-3}{I}^{-2})]}

 \sf{=[({M}^{-2+1+1})({L}^{-4+2+2})({T}^{8-2-3})({I}^{4-2-2})]}

 \sf{=[{M}^{0}{L}^{0}{T}^{3}{I}^{0}]}


Anonymous: Good!
Similar questions