Math, asked by SharmaShivam, 1 year ago

If l cosec\theta + m cot\theta + n = 0 and
l' cosec\theta + m' cot\theta + n' = 0. Show that: (mn'-m'n)^2 - (nl'-n'l)^2 = (lm'-l'm)^2.

Answers

Answered by Anonymous
22
\boxed{\mathsf{ Solution : }}


\mathsf{ Given, }


\mathsf{ \implies l \: cosec \: \theta \: + \: m \: cot \: \theta \: + \:n \: = \: 0 \qquad...(1) \: } \\ \\ \mathsf{ \implies l' \: cosec \: \theta \: + \: m' \: cot \: \theta \: + \: n' \: = 0 \qquad...(2) } \\ \\ \mathsf{ Using \: Cross \: Multiplication \: Method, }



\mathsf{ Coe. \: of \: cosec \: \theta \quad Coe. \: of \: cot \: \theta \quad Const. \: term }<br />\\ \\ \mathsf{ \qquad \: l \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \qquad \qquad m \qquad \qquad n } \\ \\ \mathsf{ \: \qquad l' \qquad \qquad \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: m' \qquad \qquad n' }



\mathsf{ Now, }


 \\ \mathsf{ \implies \dfrac{cosec\: \theta}{mn' \: - \:m'n } \: = \: \dfrac{ cot \: \theta}{nl' \: - \:n'l} \: = \: \dfrac{1}{lm' \: - \:l'm } }

\mathsf{ Now, }

 \\ \mathsf{ \implies \dfrac{ cosec \: \theta }{mn' \: - \: m'n } \: = \: \dfrac{1}{lm' \: - \: l'm}}<br />\\ \\ \\ \mathsf{ \therefore \: cosec\: \theta \: = \: \dfrac{ mn' \: - \: m'n \: }{ lm' \: - \: l'm } \qquad...(3)}

\mathsf{ Now, } \\ \\ \\ \mathsf{ \implies \dfrac{ cot \: \theta }{nl' \: - \:n'l} \: = \: \dfrac{1}{lm' \: - \: l'm }} \\ \\ \\ \mathsf{ \implies \: cot \: \theta \: = \: \dfrac{ nl' \: - \: n'l }{ lm' \: - \: l'm }}

\mathsf{ Using \: trigonometric \: identity , } \\ \\ \\<br /><br /><br />\boxed{\mathsf{\implies cot \: \theta \: = \: \sqrt{ \: {cosec}^{2} \: \theta \: - \: 1 \: }}}<br />


\mathsf{\implies \sqrt{\: {cosec}^{2} \: \theta \: - \: 1 }\: = \: \dfrac{nl' \: - \: n'l}{lm' \: - \: l'm}}<br />



<br />\mathsf{ \implies {cosec}^{2} \: \theta \: - \: 1 \: = \: {(\dfrac{nl' \: - \:n'l\:}{lm' \: - \:l'm \:})}^{2}}



\mathsf{ Plug \: the \: value \: of \:(3), }



 \mathsf{\implies {(\dfrac{mn' \: - \:m'n \:}{lm' \: - \:l'm})}^{2} \: - \:1 \: = \:{(\dfrac{nl' \: - \:n'l\:}{lm' \: - \:l'm \:})}^{2}} \\ \\



\mathsf{ \implies \dfrac{{( \:mn' \: - \:m'n \:)}^{2}}{{( \: lm' \: - \: l'm \: )}^{2}} \: - \: 1 \: = \: \dfrac{{( \:nl' \: - \:n'l \: )}^{2}}{{( \: lm' \: - \:l'm \:)}^{2}}}<br />\\ \\



\mathsf{ \implies \dfrac{{ ( mn' \: - \: m'n \: )}^{2} \: - \: {( \: lm' \: - \: l'm \: )}^{2} }{ \cancel{{( \: lm' \: - \: l'm \: )}^{2}} } \: = \: \dfrac{{( \:nl' \: - \:n'l \: )}^{2}}{ \cancel{{( \: lm' \: - \:l'm \:)}^{2}}}} \\ \\



\underline{\mathsf{ \therefore \: { ( \: mn' \: - \: m'n \: )}^{2} \: - \: {( \: nl'\: - \: n'l \: )}^{2} \: = \: { ( \: lm' \: - \: l'm \: )}^{2}}}<br />

SharmaShivam: Thanks
SharmaShivam: Awesome answer
Anonymous: Thanks bhai !!
FuturePoet: Lovely ❤❤ ✍® Awesome se bhi awesome
Anonymous: Thanks Sis !!
SharmaShivam: To whom?
SharmaShivam: ✌ ✌
Anonymous: Thanks @inflameroftheancient !!
Answered by devip649
1

Step-by-step explanation:

\boxed{\mathsf{ Solution : }}

Solution:

\mathsf{ Given, }Given,

\begin{gathered}\mathsf{ \implies l \: cosec \: \theta \: + \: m \: cot \: \theta \: + \:n \: = \: 0 \qquad...(1) \: } \\ \\ \mathsf{ \implies l' \: cosec \: \theta \: + \: m' \: cot \: \theta \: + \: n' \: = 0 \qquad...(2) } \\ \\ \mathsf{ Using \: Cross \: Multiplication \: Method, } \end{gathered}

⟹lcosecθ+mcotθ+n=0...(1)

⟹l

cosecθ+m

cotθ+n

=0...(2)

UsingCrossMultiplicationMethod,

\begin{gathered}\mathsf{ Coe. \: of \: cosec \: \theta \quad Coe. \: of \: cot \: \theta \quad Const. \: term } < br / > \\ \\ \mathsf{ \qquad \: l \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \qquad \qquad m \qquad \qquad n } \\ \\ \mathsf{ \: \qquad l' \qquad \qquad \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: m' \qquad \qquad n' } \end{gathered}

Coe.ofcosecθCoe.ofcotθConst.term<br/>

lmn

l

m

n

\mathsf{ Now, }Now,

\begin{gathered} \\ \mathsf{ \implies \dfrac{cosec\: \theta}{mn' \: - \:m'n } \: = \: \dfrac{ cot \: \theta}{nl' \: - \:n'l} \: = \: \dfrac{1}{lm' \: - \:l'm } } \end{gathered}

mn

−m

n

cosecθ

=

nl

−n

l

cotθ

=

lm

−l

m

1

\mathsf{ Now, }Now,

\begin{gathered} \\ \mathsf{ \implies \dfrac{ cosec \: \theta }{mn' \: - \: m'n } \: = \: \dfrac{1}{lm' \: - \: l'm}} < br / > \\ \\ \\ \mathsf{ \therefore \: cosec\: \theta \: = \: \dfrac{ mn' \: - \: m'n \: }{ lm' \: - \: l'm } \qquad...(3)} \end{gathered}

mn

−m

n

cosecθ

=

lm

−l

m

1

<br/>

∴cosecθ=

lm

−l

m

mn

−m

n

...(3)

\begin{gathered}\mathsf{ Now, } \\ \\ \\ \mathsf{ \implies \dfrac{ cot \: \theta }{nl' \: - \:n'l} \: = \: \dfrac{1}{lm' \: - \: l'm }} \\ \\ \\ \mathsf{ \implies \: cot \: \theta \: = \: \dfrac{ nl' \: - \: n'l }{ lm' \: - \: l'm }}\end{gathered}

Now,

nl

−n

l

cotθ

=

lm

−l

m

1

⟹cotθ=

lm

−l

m

nl

−n

l

\begin{gathered}\mathsf{ Using \: trigonometric \: identity , } \\ \\ \\ < br / > < br / > < br / > \boxed{\mathsf{\implies cot \: \theta \: = \: \sqrt{ \: {cosec}^{2} \: \theta \: - \: 1 \: }}} < br / > \end{gathered}

Usingtrigonometricidentity,

<br/><br/><br/>

⟹cotθ=

cosec

2

θ−1

<br/>

\mathsf{\implies \sqrt{\: {cosec}^{2} \: \theta \: - \: 1 }\: = \: \dfrac{nl' \: - \: n'l}{lm' \: - \: l'm}} < br / >⟹

cosec

2

θ−1

=

lm

−l

m

nl

−n

l

<br/>

< br / > \mathsf{ \implies {cosec}^{2} \: \theta \: - \: 1 \: = \: {(\dfrac{nl' \: - \:n'l\:}{lm' \: - \:l'm \:})}^{2}}<br/>⟹cosec

2

θ−1=(

lm

−l

m

nl

−n

l

)

2

\mathsf{ Plug \: the \: value \: of \:(3), }Plugthevalueof(3),

\begin{gathered} \mathsf{\implies {(\dfrac{mn' \: - \:m'n \:}{lm' \: - \:l'm})}^{2} \: - \:1 \: = \:{(\dfrac{nl' \: - \:n'l\:}{lm' \: - \:l'm \:})}^{2}} \\ \\ \end{gathered}

⟹(

lm

−l

m

mn

−m

n

)

2

−1=(

lm

−l

m

nl

−n

l

)

2

\begin{gathered}\mathsf{ \implies \dfrac{{( \:mn' \: - \:m'n \:)}^{2}}{{( \: lm' \: - \: l'm \: )}^{2}} \: - \: 1 \: = \: \dfrac{{( \:nl' \: - \:n'l \: )}^{2}}{{( \: lm' \: - \:l'm \:)}^{2}}} < br / > \\ \\ \end{gathered}

(lm

−l

m)

2

(mn

−m

n)

2

−1=

(lm

−l

m)

2

(nl

−n

l)

2

<br/>

\begin{gathered}\mathsf{ \implies \dfrac{{ ( mn' \: - \: m'n \: )}^{2} \: - \: {( \: lm' \: - \: l'm \: )}^{2} }{ \cancel{{( \: lm' \: - \: l'm \: )}^{2}} } \: = \: \dfrac{{( \:nl' \: - \:n'l \: )}^{2}}{ \cancel{{( \: lm' \: - \:l'm \:)}^{2}}}} \\ \\ \end{gathered}

(lm

−l

m)

2

(mn

−m

n)

2

−(lm

−l

m)

2

=

(lm

−l

m)

2

(nl

−n

l)

2

\underline{\mathsf{ \therefore \: { ( \: mn' \: - \: m'n \: )}^{2} \: - \: {( \: nl'\: - \: n'l \: )}^{2} \: = \: { ( \: lm' \: - \: l'm \: )}^{2}}} < br / >

∴(mn

−m

n)

2

−(nl

−n

l)

2

=(lm

−l

m)

2

<br/>

Similar questions