Math, asked by rakeshkumar76018, 9 months ago

if lemma and beta are the zeroes of p(x)=x²-5x+6, find the value of lemma +beta -3lemma×beta

Answers

Answered by Sharad001
15

Question :-

If lambda and beta are the zeros of p(x) = x² - 5x + 6 , Find the value of \sf{ \lambda + \beta - 3 \lambda\:\beta }

Answer :-

 \red{ \boxed{ \leadsto}} \boxed{\lambda + \beta - 3 \lambda\:\beta \:  =  - 13 \: }

Solution :-

Given that :-

  \sf{\lambda  \:  \: and \:  \:  \beta \: are \: the \: zeroes \: of }\:  \:  \\  \to \sf{ \: p(x) =  {x}^{2}   - 5x + 6}

We know that ;

 \boxed{ \sf{Sum \: of \: zeroes \:  =  -  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }} \\  \\  \boxed{\sf{ Product \: of \: zeroes =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }}

Hence ,

 \star \:  \bf{Sum \: of \: zeroes \: }\:  \\ \red{ \implies}  \boxed{ \lambda +  \beta =  \frac{5}{1} } \\  \\  \star \:  \bf{Product \: of \: zeroes } \:  \\   \green{\implies \: }   \boxed{\lambda \:  \beta =  \frac{6}{1} }

Therefore ,

 \pink{ \implies} \: (\lambda + \beta )- 3 (\lambda\:\beta) \:  \\  \\  \implies \:  \frac{5}{1}  - 3 \times  \frac{6}{1}  \\  \\  \blue{ \implies \: }5 - 18 =  - 13 \:

Similar questions