Physics, asked by tkkayalvizhigmailcom, 8 months ago

If length and breadth of a plate are
(40+0.2) cm and (30+0.1)cm, the absolute
error in measurement of area is
2) 8 cm? 3) 9 cm? 4) 7 cm
1) 10cm?​

Answers

Answered by Anonymous
26

\large{\underline{\underline{\mathfrak{Answer :}}}}

  • Error in measurement of Area of rectangle is ± 10 cm²

\underline{\underline{\mathfrak{Step - By -Step -Explanation \: :}}}

  • Length (L) = (40 ± 0.2) cm
  • Breadth (B) = (30 ± 0.1) cm

First we will find area of rectangle without including error limits.

\longrightarrow \sf{Area \: = \: Length \: \times \: Breadth} \\ \\ \longrightarrow \sf{A \: = \: 40 \: \times \: 30} \\ \\ \longrightarrow \sf{A \: = \: 1200} \\ \\ \underline{\sf{\therefore \: Area \: of \: rectangle \: is \: 1200 \: cm^2}}

______________________________

Now, we have to calculate error in measurement of area :

For this use error in Multiplication Case :

\dashrightarrow {\boxed{\sf{\dfrac{\Delta A}{A} \: = \: \dfrac{\Delta L}{L} \: + \: \dfrac{\Delta B}{B}}}} \\ \\ \dashrightarrow \tt{\dfrac{\Delta A}{1200} \: = \: \dfrac{0.2}{40} \: + \: \dfrac{0.1}{30}} \\ \\ \dashrightarrow \tt{\Delta A \: = \: 1200 \: \times \: \bigg( \dfrac{0.2 \: \times \: 30 \: + \: 0.1 \: \times \: 40}{1200} \bigg)} \\ \\ \dashrightarrow \tt{\Delta A \: = \: 0.2 \: \times \: 30 \: + \: 0.1 \: \times \: 40} \\ \\ \dashrightarrow \tt{\Delta A \: = \: 6 \: + \: 4} \\ \\ \dashrightarrow \tt{\Delta A \: = \: 10} \\ \\ \underline{\sf{\therefore \: Error \: in \: measurement \: of \: area \: is \: \pm \: 10 \: cm^2}}

Answered by SillySam
25

Given :

  • Length = (40 ± 0.2 ) cm
  • Breadth = (30 ± 0.1) cm

To find :

  • Absolute error in measurement

Solution:

Area of the plate (A) = length × breadth

= 40 × 30

= 1200 cm²

We know that

\boxed{\rm \dfrac{\Delta A}{A} = \dfrac{\Delta L}{L} + \dfrac{\Delta B}{B}}

\rm \Delta A = A \times \dfrac{\Delta L}{L} + \dfrac{\Delta B}{B}

  = 1200 \times  (\frac{0.2}{40}  +  \frac{0.1}{30} )

 = 1200( \frac{0.2 \times 30 + 0.1 \times 40}{1200} )

 = 1200( \frac{6 + 4}{1200} )

 = 1200 \times  \frac{10}{1200}

 = 10

Hence , the absolute error in measurement of area is 10 cm² .

 \boxed{  \large\rm  \orange{area} \:  =  \pink{1200} \pm \red{10}  \: \purple{ {cm}^{2} }}

Similar questions