Math, asked by mokshagnamk, 5 months ago

If Length of dingonal of a rhombers whose area is 264 length is 24 cm. then find the length of second diagnol​

Answers

Answered by Anonymous
8

\boxed{\huge{\bf{\star{Correct\:question \:-:}}}}

  • If the length of diagonal of a rhombus whose area is 264 cm² length is 24 cm. then Find the length of second Diagonal.

AnswEr-:

  • \underline{\boxed{\sf{\large {  Diagonal_{2}\:or\:The\:second \:diagonal\:of\:Rhombus\:is\:22\:cm}}}}\\\\

Explanation-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\: \:Diagonal \:of\:\:Rhombus \:is\:= \frak{24cm}} & \\\\ \sf{Area \:of\:Rhombus \:is \:=\:\frak{264cm^{2}}}\end{cases} \\\\

  •  \frak{To \:Find \:\: -:} \begin{cases} \sf{The\:second \:Diagonal \:of\:\:Rhombus \:}\end{cases} \\\\

\star {\bigstar {\sf{\large { Solution \:of\:Question -: }}}}\\\\

  • \underline{\boxed{\star{\sf{\purple{Area\:of \:Rhombus\::\dfrac {1}{2} \times Diagonal_{1} \times Diagonal_{2}}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{Diagonal _{1}\:=\:First \:Diagonal \:of\:\:Rhombus \:is\:= \frak{24cm}} & \\\\ \sf{Area \:of\:Rhombus \:is \:=\:\frak{264cm^{2}}}& \\\\\sf{Diagonal _{2}=\:Second \:Diagonal \:of\:\:Rhombus \:is\:= \frak{??}} \end{cases} \\\\

\star {\bigstar {\sf{\large { Now -: }}}}\\\\

  • \longrightarrow{\sf{\large {  264cm^{2}= \dfrac{1}{2} \times 24 \times Diagonal_{2}  }}}\\\\

  • \longrightarrow{\sf{\large {  264cm^{2}=  12 \times Diagonal_{2}  }}}\\\\

  • \longrightarrow{\sf{\large {   \dfrac{264}{12} =  Diagonal_{2}  }}}\\\\

  • \longrightarrow{\sf{\large {   22cm =  Diagonal_{2}  }}}\\\\

\star {\bigstar {\sf{\large { Hence -: }}}}\\\\

  • \underline{\boxed{\sf{\large {  Diagonal_{2}\:or\:The\:second \:diagonal\:of\:Rhombus\:is\:22\:cm}}}}\\\\

_____________________________________________

\star {\bigstar {\sf{\huge { Verification -: }}}}\\\\

  • \underline{\boxed{\star{\sf{\purple{Area\:of \:Rhombus\::\dfrac {1}{2} \times Diagonal_{1} \times Diagonal_{2}}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{Diagonal _{1}\:=\:First \:Diagonal \:of\:\:Rhombus \:is\:= \frak{24cm}} & \\\\ \sf{Area \:of\:Rhombus \:is \:=\:\frak{264cm^{2}}}& \\\\\sf{Diagonal _{2}=\:Second \:Diagonal \:of\:\:Rhombus \:is\:= \frak{22cm}} \end{cases} \\\\
  • \star {\bigstar {\sf{\large { Now \:Putting\:known\:Values-: }}}}\\\\

  • \longrightarrow{\sf{\large {  264cm^{2}= \dfrac{1}{2} \times 24 \times 22  }}}\\\\

  • \longrightarrow{\sf{\large {  264cm^{2}=  12 \times 22  }}}\\\\

  • \longrightarrow{\sf{\large {  264cm^{2}=  264cm^{2}  }}}\\\\

Therefore,

  • \implies {\bigstar {\sf{\large {LHS = RHS  }}}}\\\\

  • \implies {\bigstar {\sf{\large {Hence ,\:Verified}}}}\\\\

_____________________♡_______________________

Similar questions