Math, asked by Anonymous, 2 months ago

If length of tangent at any point on the curve y = f(x) intercepted between the point and the X - axis is of length 1. Find the equation of the curve.

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

Length of tangent at any point on the curve y = f(x), intercepted between the point and the X - axis is of length 1 unit.

We know,

\red{\rm :\longmapsto\:Length \: of \: tangent =  \bigg |y \sqrt{1 +  {\bigg(\dfrac{dx}{dy} \bigg) }^{2} } \bigg|}

So, given that Length of tangent = 1

\rm :\longmapsto\:\bigg |y \sqrt{1 +  {\bigg(\dfrac{dx}{dy} \bigg) }^{2} } \bigg| = 1

On squaring both sides, we get

\rm :\longmapsto\: {y}^{2}\bigg(1 +  {\bigg(\dfrac{dx}{dy} \bigg) }^{2}  \bigg) = 1

\rm :\longmapsto\:1 +  {\bigg(\dfrac{dx}{dy}\bigg) }^{2}  = \dfrac{1}{ {y}^{2} }

\rm :\longmapsto\: {\bigg(\dfrac{dx}{dy}\bigg) }^{2}  = \dfrac{1}{ {y}^{2} }  - 1

\rm :\longmapsto\: {\bigg(\dfrac{dx}{dy}\bigg) }^{2}  = \dfrac{1 -  {y}^{2} }{ {y}^{2} }

\rm :\longmapsto\: {\bigg(\dfrac{dy}{dx}\bigg) }^{2}  = \dfrac{{y}^{2} }{1 -  {y}^{2} }

\bf\implies \:\dfrac{dy}{dx}  \: =  \:  \pm \: \dfrac{y}{ \sqrt{1 -  {y}^{2} } }

\rm :\longmapsto\: \dfrac{ \sqrt{1 -  {y}^{2} } }{y}dy \:  =  \:  \pm \:  \: dx

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int  \dfrac{ \sqrt{1 -  {y}^{2} } }{y}dy \:  =  \:  \pm \:  \: \displaystyle\int dx

\rm :\longmapsto\:\displaystyle\int  \dfrac{y \sqrt{1 -  {y}^{2} } }{ {y}^{2} }dy \:  =  \:  \pm \:  x + c

\rm :\longmapsto\:\displaystyle\int  \dfrac{\sqrt{1 -  {y}^{2} } }{ {y}^{2} }ydy \:  =  \:  \pm \:  x + c

To integrate LHS, we use method of Substitution

Put

\red{\rm :\longmapsto\: \sqrt{1 -  {y}^{2} } = t}

\red{\rm :\longmapsto\:1 -  {y}^{2} =  {t}^{2}}

\red{\rm :\longmapsto\: - 2ydy = 2tdt}

\red{\rm :\longmapsto\: ydy \:  =  \:  -  \: tdt}

So, above integral can be rewritten as,

\rm :\longmapsto\:\displaystyle\int  \frac{t}{1 -  {t}^{2} } ( - t \: dt) =  \:  \pm \: x \:  +  \: c

\rm :\longmapsto\:\displaystyle\int  \frac{ -  {t}^{2} }{1 -  {t}^{2} } \: dt =  \:  \pm \: x \:  +  \: c

\rm :\longmapsto\:\displaystyle\int  \frac{1 -  {t}^{2}  - 1}{1 -  {t}^{2} } \: dt =  \:  \pm \: x \:  +  \: c

\rm :\longmapsto\:\displaystyle\int  \frac{1 -  {t}^{2}}{1 -  {t}^{2} } \: dt - \displaystyle\int  \frac{1}{1 -  {t}^{2} }dt  =  \:  \pm \: x \:  +  \: c

\rm :\longmapsto\:\displaystyle\int  1 \: dt  +  \displaystyle\int  \frac{1}{{t}^{2}  - 1}dt  =  \:  \pm \: x \:  +  \: c

We know,

\boxed{ \rm{ \displaystyle\int  \frac{dx}{ {x}^{2}  -  {a}^{2} } =  \frac{1}{2a}log\bigg | \frac{x - a}{x + a} \bigg|  + c}}

\rm :\longmapsto\:t +  \dfrac{1}{2}log\bigg | \dfrac{t - 1}{t + 1} \bigg|  =  \:  \pm \: x + c

\rm :\longmapsto\: \sqrt{1 -  {y}^{2} }  +  \dfrac{1}{2}log\bigg | \dfrac{ \sqrt{1 -  {y}^{2} }  - 1}{ \sqrt{1 -  {y}^{2} }  + 1} \bigg|  =  \:  \pm \: x + c

is the required curve.

Answered by Atlas99
7

QUESTION

If length of tangent at any point on the curve y = f(x) intercepted between the point and the X - axis is of length 1. Find the equation of the curve.

SOLUTION

GIVEN IN ATTACHMENT.

THANKS!!

Attachments:
Similar questions