Math, asked by ayra54, 8 months ago

if lim x tends to 2 (x^p-2^p/x-2)=192. the p= (3,4,6,10)​

Answers

Answered by pulakmath007
2

SOLUTION

GIVEN

\displaystyle  \sf{\lim_{x \to 2}  \: \frac{ {x}^{p} -  {2}^{p}  }{x-2} = 192}

TO DETERMINE

The value of p

EVALUATION

Here the given limit is

\displaystyle  \sf{\lim_{x \to 2}  \: \frac{ {x}^{p} -  {2}^{p}  }{x-2} = 192}

We are aware of the formula that

 \boxed{ \:  \: \displaystyle  \sf{\lim_{x \to a}  \: \frac{ {x}^{n} -  {a}^{n}  }{x-a} = n \:  {a}^{n - 1} } \:  \: }

Thus we get

\displaystyle  \sf{\lim_{x \to 2}  \: \frac{ {x}^{p} -  {2}^{p}  }{x-2} = 192}

\displaystyle  \sf{ \implies \: p \:  \times  {2}^{p - 1}  = 192}

\displaystyle  \sf{ \implies \: p \:  \times  {2}^{p - 1}  = 6 \times  {2}^{5} }

\displaystyle  \sf{ \implies \: p \:  \times  {2}^{p - 1}  = 6 \times  {2}^{6 - 1} }

Comparing both sides we get

p = 6

FINAL ANSWER

Hence the required value of p = 6

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions