Math, asked by shubhamrudra, 10 months ago

If lim x tends to 3 px^2 -q/x-3 = 6 then find the value of p and q.

Answers

Answered by Anonymous
15

Solution :

Given expression,

 \lim \:  \:  \:  \:  \:  \:  \:  \: \tt{ \dfrac{ {px}^{2} - q }{x - 3} = 6 } \\  \tt{ x \longrightarrow \: 3}

At 3,the given function would be in 0/0 form

L'Hospital's Rule

  • Finding the derivatives of numerator and denominator and then equating the expressions to the precursor step

  • Can only be used when the function tends to be in 0/0 or ∞/∞ form

Numerator

\boxed { \begin{minipage}{5 cm} $\sf{y' =  \dfrac{d( {px}^{2}  - q)}{dx} } \\  \\  \longmapsto \:  \sf{y'  = 2px \: }$ \end{minipage}}

Denominator

\boxed{\begin{minipage}{5 cm} \ $\sf{y' =  \dfrac{d(x - 3)}{dx} } \\  \\  \longmapsto \:  \sf{y' = 1}$ \end{minipage}}

  • Derivative of a constant is zero

  • Derivative of x w.r.t to x is one

Using L'Hospital's Rule ,

 \colon \implies \:  \tt{ \lim \  \:  \:  \:  \:  \:  \:  \:  \:  2px  = 6} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{x \longrightarrow \: 3}

 \colon \implies \:  \tt{6p  \: = 6 } \\  \\  \colon \:  \implies \:  \tt{p  = \dfrac{6}{6} } \\  \\  \colon \implies \:  \boxed{ \boxed{ \tt{p = 1}}}

Also,

 \lim \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ \frac{ {px}^{2}  - q}{x - 3}  = 6} \\ \tt{x \longrightarrow \: 3} \\  \\  \colon \:  \implies \tt{ \lim \ \:  \:  \:  \:  \:  \:  \:  \:  px {}^{2} - q = 6(x - 3) }  \\  \tt{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x \longrightarrow \: 3} \\  \\   \colon \implies \tt{9p - q = 0 -  -  - (1)}

Putting p = 1 in equation (1),

  \leadsto \:  \sf{9(1) - q= 0} \\  \\   \leadsto \:   \boxed{ \boxed{ \sf{q = 9}}}

Thus,p = 1 and q = 9

Similar questions