If `lim_(xto oo)([f(x)]+x^(2)){f(x)}=k`, where `f(x)=(tanx)/x` and `[.],{.}` denote geatest integer and fractional part of x respectively, the value of `[k//e]` is ………..
Answers
Answered by
5
Answer:
Assume that limx→a f(x)=K and limx→a g(x)=L exist and that c is any constant. Then,
limx→a [cf(x)]=c limx→a f(x)=cK
limx→a [f(x)±g(x)]= limx→a f(x)± limx→a g(x)=K±L
limx→a [f(x)g(x)]= limx→a f(x) limx→a g(x)=KL
limx→a [
f(x)
g(x)
]=
limx→a f(x)
limx→a g(x)
=
K
L
,provided L= limx→a g(x)≠0
limx→a [f(x)]n=[ limx→a f(x)]n=Kn,where n is any real number
limx→a [n
√
f(x)
]=n
√
limx→a f(x)
limx→a c=c
limx→a x=a
limx→a xn=an
Similar questions