Math, asked by yuvraj2890, 11 months ago

if line AB and CD are parallel . find the value of x . solve it please . photo given​

Attachments:

Answers

Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION\:  \: } \mid}}}}}

 \sf{ In  \:  \: the \:  \:  diagram,   \red{AB \parallel CD}  \:  \: and  \:  \:  \red{LM } \:  \: is  \:  \:} \\  \sf{ the \:  \:  intersector.} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \red{LM}  \:  \: intersect  \:  \:  \red{AB} \:  \:  line  \:  \: at  \:  \: the  \:  \: point \:  \:} \\  \sf{   \red{P }\:  \:  and  \:  \:  \red{CD }\:  \:  line \:  \:  at  \:  \: the \:  \:  point \:  \: \red{Q.}}

 \underline{ \mathfrak {\:  \: Given,  \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \red{\angle CPM = 106 \degree}} \\  \:  \:  \:  \:  \:  \:  \:  \:   \: \tt{  \red{\angle AQM = 3x + 2x}} \\  \\  \underline{ \mathfrak{ \: </p><p> \: To  \:  \: find :  \to  \: }}  \\   \\ \:  \:  \:  \:  \:  \:  \huge{ \tt{The  \:  \: value \:  \:  of \:  \:  \red{ x } = \: ? }}

 \underline{ \mathfrak{ \:  \: We  \:  \: know \:  \:  that, \:  \: }} \\  \\   \text{ \pink{When a intersector intersects two parallel} } \\  \text{ \pink{lines, their corresponding angles are equal.}}

 \underline{ \text{ \: In \:  \:  the  \:  \: figure, \: }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ \red{AB } \parallel  \red{CD}  \:  \: and \:  \:  \red{ LM } \:  \: is \:  \:  the \:  \:  intersector \:  \:  } \\  \tt{which \:  \:  intersect \:  \:   \red{AB}  \:  \: and  \:  \:  \red{CD} \:  \:  parallel \:  \: } \\ \tt{ lines  \:  \: at \:  \:  point  \: \:   \red{P}  \:  \: and  \:  \:  \red{Q } \:  \: respectively.}

 \mathfrak{So,} \\  \\  \tt{\angle CPM  \:  \: and \:  \:  \angle AQM  \:  \: are \:  \:  corresponding \:  \:  angles. } \\  \\   \:  \:  \:  \:  \: \tt{\therefore  \angle CPM = \angle AQM} \\  \\  \tt{ \implies \: 106\degree = 3x + 2x} \\  \\ \tt{ \implies \: 106\degree = 5x} \\   \\ \tt{ \implies \:x =  \frac{106 \degree}{5}  } \\  \\   \:  \:  \:  \:  \: \tt{ \therefore \:  \: x = 21.2 \degree \: }

Attachments:
Answered by Pricilla
5

 \huge{ \underline{ \overline{ \mid{ \mathcal{ \pink{ \:   \: SOLUTION\:  \: } \mid}}}}}

 \bf{ In  \:  \: the \:  \:  diagram,   \pink{AB \parallel CD}  \:  \: and  \:  \:  \pink{LM } \:  \: is  \:  \:} \\  \bf{ the \:  \:  intersector.} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ \pink{LM}  \:  \: intersect  \:  \:  \pink{AB} \:  \:  line  \:  \: at  \:  \: the  \:  \: point \:  \:} \\  \bf{   \red{P }\:  \:  and  \:  \:  \pink{CD }\:  \:  line \:  \:  at  \:  \: the \:  \:  point \:  \: \pink{Q.}}

 \underline{ \bf{\:  \: Given,  \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \pink{\angle CPM = 106 \degree}} \\  \:  \:  \:  \:  \:  \:  \:  \:   \: \sf{  \pink{\angle AQM = 3x + 2x}} \\  \\  \underline{ \bf{ \:  \: To  \:  \: find :  \mapsto  \: }}  \\   \\ \:  \:  \:  \:  \:  \:  \huge{ \sf{The  \:  \: value \:  \:  of \:  \:  \pink{ x } = \: ? }}

 \underline{ \bf{ \:  \: We  \:  \: know \:  \:  that, \:  \: }} \\  \\   \text{\red{When a intersector intersects two parallel} } \\  \text{ \red{lines, their corresponding angles are equal.}}

 \underline{ \sf{ \: In \:  \:  the  \:  \: figure, \: }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{ \blue{AB } \parallel  \blue{CD}  \:  \: and \:  \:  \blue{ LM } \:  \: is \:  \:  the \:  \:  intersector \:  \:  } \\  \sf{which \:  \:  intersect \:  \:   \blue{AB}  \:  \: and  \:  \:  \blue{CD} \:  \:  parallel \:  \: } \\ \sf{ lines  \:  \: at \:  \:  point  \: \:   \blue{P}  \:  \: and  \:  \:  \blue{Q } \:  \: respectively.}

 \bf{So,} \\  \\  \sf{\angle CPM  \:  \: and \:  \:  \angle AQM  \:  \: are \:  \:  corresponding \:  \:  angles. } \\  \\   \:  \:  \:  \:  \: \sf{\therefore  \angle CPM = \angle AQM} \\  \\  \sf{ \rightarrow  \: 106\degree = 3x + 2x} \\  \\ \sf{ \rightarrow \: 106\degree = 5x} \\   \\ \sf{ \rightarrow \:x =  \frac{106 \degree}{5}  } \\  \\   \:  \:  \:  \:  \: \sf{ \therefore \:  \: \red{x = 21.2 \degree} \: }

Attachments:
Similar questions