if line PQ and RS interest at point t, such the <PRT =40°,<RPT =95°and <TSQ =75,find <SQT.
Answers
Answered by
2
Step-by-step explanation:
∠PRT+∠RPT+∠PTR=180
∘
⇒90
∘
+45
∘
+∠PTR=180
∘
⇒135
∘
+∠PTR=180
∘
⇒∠PTR=180
∘
−135
∘
⇒∠PTR=45
∘
.
Also,
∠STQ=∠PTR
∠STQ=45
∘
(vertically opposite angles)
In ΔSQT
By angle sum property of triangle
∠SQT+∠STQ+∠TSQ=180
∘
∠SQT+75
∘
+45
∘
=180
∘
∠SQT+120
∘
=180
∘
∠SQT=180
∘
−120
∘
∠SQT=60
∘
Similar questions