If linear equation has solutions (5,-5),(0,0),(5,-5), then what is the equation?
Answers
Answered by
29
If the solutions of a linear equation are (5,-5),(0,0),(5,-5) , then the linear equation which satisfies all the solutions is :
x + y = 0
------------------------------------------------------------------------------------------------------
1) When x = 5 , y = -5
5 + (-5) = 0
∴ x + y = 0
----------------------------------------------------------------------------------------------------
2) When x = 0 , y = 0
0 + 0 = 0
∴ x + y = 0
------------------------------------------------------------------------------------------------------
3)When x = -5 , y = 5
(-5) + 5 = 0
∴ x + y = 0
------------------------------------------------------------------------------------------------------
x + y = 0
------------------------------------------------------------------------------------------------------
1) When x = 5 , y = -5
5 + (-5) = 0
∴ x + y = 0
----------------------------------------------------------------------------------------------------
2) When x = 0 , y = 0
0 + 0 = 0
∴ x + y = 0
------------------------------------------------------------------------------------------------------
3)When x = -5 , y = 5
(-5) + 5 = 0
∴ x + y = 0
------------------------------------------------------------------------------------------------------
Answered by
1
Answer:
Let the linear equation be
ax + by + c = 0 --------------- (i)
where a, b and c are constants.
The given solutions are, (5, -5), (0, 0) and (5, -5).
Putting (0, 0) solution i.e., x = 0 and y = 0 in (i), we get
a(0) + b(0) + c = 0
0 + 0 + c = 0
c = 0
Now the equation becomes,
ax + by = 0 ------------------- (ii)
Putting (5,-5) solution in (ii), we get
a(5) + b(-5) = 0
5a - 5b = 0
5(a - b) = 0
a - b = 0
a = b --------- (a)
Now the equation becomes,
ax + ay = 0
a(x + y) = 0
x + y = 0
Hence, the linear equation is x + y = 0.
#SPJ3
Similar questions