If lines AB and DE are parallel, find the value of LBCA.
Answers
Answer:
LBCA =104°
Pls mark me as Brainliest
Answer:
The value of x is 7.
Step-by-step explanation:
Given information: AB || DC.
In triangle AOB and COD,
\angle AOB=\angle COD∠AOB=∠COD (Vertically opposite angles)
\angle OBA=\angle ODC∠OBA=∠ODC (Alternate interior angles)
\angle OAB=\angle OCD∠OAB=∠OCD (Alternate interior angles)
By AA rule of similarity,
\triangle AOB\sim\triangle COD△AOB∼△COD
The corresponding sides of two similar triangles are proportional.
\frac{OA}{OC}=\frac{OB}{OD}
OC
OA
=
OD
OB
\frac{x+5}{x+3}=\frac{x-1}{x-2}
x+3
x+5
=
x−2
x−1
(x+5)(x-2)=(x-1)(x+3)(x+5)(x−2)=(x−1)(x+3)
x^2+5x-2x-10=x^2+3x-x-3x
2
+5x−2x−10=x
2
+3x−x−3
3x-10=2x-33x−10=2x−3
3x-2x=-3+103x−2x=−3+10
x=7x=7
Therefore the value of x is 7.
Please mark me brainlist