if lines PQ and RS intersct at point T, such that angle PRT=40°, angle RPT= 95° and angle TSQ=75°, find angleSQT
Answers
Answered by
6
from diagram we can write that STQ=PTR
in ∆PTR,
PTR+TPR+PRT=180
PTR=180-40-95=45°
so PTR=STQ=45
in ∆STQ
STQ+TSQ+TQS=180
SQT=180-45-75=60°
in ∆PTR,
PTR+TPR+PRT=180
PTR=180-40-95=45°
so PTR=STQ=45
in ∆STQ
STQ+TSQ+TQS=180
SQT=180-45-75=60°
Attachments:
Answered by
0
Hello mate ☺
____________________________
Solution:
In ∆PRT, we have
∠PRT+∠RPT+∠RTP=180° (Sum of three angles of a triangle =180°)
⇒40°+95°+∠RTP=180°
⇒∠RTP=180°−40°−95°=45°
∠RTP=∠QTS (Vertically Opposite Angles)
Therefore, ∠QTS is also equal to 45°
In ∆STQ, we have
∠SQT+∠TSQ+∠QTS=180° (Sum of three angles of a triangle =180°)
⇒∠SQT+75°+45°=180°
⇒∠SQT=180°−75°−45°=60°
I hope, this will help you.☺
Thank you______❤
_____________________________❤
Attachments:
Similar questions
Math,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
English,
1 year ago
History,
1 year ago