Math, asked by Anonymous, 4 months ago

If lines PQ and RS intersect at point T, such that ∠PRT = 40°, ∠RPT = 95° and ∠TSQ= 75°, find ∠SQT. In Fig. 6.42.​

Attachments:

Answers

Answered by kotourasan12374
1

Answer:

 We have,

lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°

In \DeltaPRT, by using angle sum property

\anglePRT + \anglePTR + \angleTPR = 180^0

So, \anglePTR  = 180^0 -95^0-40^0

 \Rightarrow \angle PTR = 45^0

Since lines, PQ and RS intersect at point T

therefore, \anglePTR = \angleQTS (Vertically opposite angles)

               \angleQTS = 45^0

Now, in \DeltaQTS,

By using angle sum property

\angleTSQ + \angleSTQ + \angleSQT = 180^0

So, \angleSQT = 180^0-45^0-75^0

\therefore \angle SQT = 60^0

Answered by BlessOFLove
4

\red{\boxed{\tt{Given࿐}}}

∠PRT=40°

∠RPT=95°

∠TSQ=75°

\red{\tt{◆To\:find◆}}

IN ΔPRT

∠PRT+∠RTP+∠TPR=180°(∠s SUM PROPERTY)

40°+∠RTP+95°=180°

∠RTP=45°

\purple{\boxed{\bf{NOW,}}} ∠RTP=∠QST=45°(VERTICALLY OPPOSITE ∠s)

NOW , IN ΔQST

∠T+∠Q+∠S=180°

45°+∠Q+75°=180°

∠Q=60°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

	&#9679\orange{\bf{diagram\: attached }}\: \green✔

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

All necessary formulas⤵️

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\purple{\boxed{\bf{Angle\:sum\: property}}}

Angle sum property of triangle states that the sum of interior angles of a triangle is 180°. Proof .Thus, the sum of the interior angles of a triangle is 180°.

\blue{\tt{Example:-}}

\red{\boxed{a+b+c=180°}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange{\boxed{\bf{Alternate\: interior\:angle}}}

Alternate interior angles are angles formed when two parallel or non-parallel lines are intersected by a transversal.Alternate interior angles are equal if the lines intersected by the transversal are parallel.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\red{\underbrace{complementary \:angle}}}}\red\star

The sum of 2 numbers=90°

example  a−b=90°

how to find "a" if a is not mentioned

\red{\underbrace{\bf{\orange{Given࿐}}}}

a= \: ?

b = 40

a+40=\:90°

a=90-40°

a=50°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\pink\star{\bf{\purple{\underbrace{supplementary\: angle}}}}\red\star

The sum of two numbers= \:180°

example a+b=180°

how to find "a" if a is not mentioned

Given

a= \:?

b =\: 40

a+40=180°

a=180-40°

a=140°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\green{\underbrace{Adjacent \:angle}}}}\red\star

If there is a common ray between {\bf&#x2220}a and {\bf&#x2220}b so it is a adjacent angle.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\blue{\underbrace{Vertical\: opposite\: angle }}}}\red\star

Vertical angles are pair angles formed when two lines intersect. Vertical angles are sometimes referred to as vertically opposite angles because the angles are opposite to each other.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\orange{\underbrace{lenear\: pair \:of\: angles}}}}\red\star

Here {\bf&#x2220}a+{\bf&#x2220}b=180°.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions