if lmn=2, then prove that (1/2+l+2m^-1)+(2^-1/1+m+n^-1)+(2^-1/1+n+2l^-1)=1/2
Answers
Correct Question (1) :-
if lmn = 2, then prove that (1/2+l+2m^-1)+(2^-1/1+m+n^-1)+2^(-1)/(1+n+2l^-1) = 1/2
Solution :-
→ (1/2+l+2m^-1) + (2^-1/1+m+n^-1) + (2^-1/1+n+2l^-1) = 1/2
Solving Each part of LHS seperately,
First Part :- 1/{2+l+2m^(-1)}
→ 1/{2+l+2m^(-1)}
→ 1/{2+l+(2/m)}
→ 1/{(2m + lm + 2) / m}
→ m/(lm + 2m + 2)
Second Part :- 2^(-1) / {1+m+n^(-1)}
→ 2^(-1) / {1+m+n^(-1)}
→ 1/2{1+m+n^(-1)}
→ 1/2(1 + m + 1/n)
→ 1/(2 + 2m + 2/n)
Now, we have given that, lmn = 2
So, lm = (2/n)
Putting value now,
→ 1/(2 + 2m + lm)
→ 1/(lm + 2m + 2)
Third Part :- (2)^(-1)/{1 + n + 2l^(-1)}
→ (1/2)/{1 + n + (2/l)}
Multiply & Divide by lm in numerator and denominator now,
→ (lm/2) / {lm + lmn + 2m}
Putting lmn = 2 in denominator now,
→ (lm/2) / (lm + 2m + 2)
Adding all three parts now,
→ m/(lm + 2m + 2) + 1/(lm + 2m + 2) + (lm/2) / (lm + 2m + 2)
As denominator is same ,
→ {m + 1 + (lm/2)} / (lm + 2m + 2)
→ {(2m + 2 + lm) /2} / (lm + 2m + 2)
→ (1/2) * [ (lm + 2m + 2) / (lm + 2m + 2) ]
→ (1/2) * 1
→ (1/2) (Ans.)
___________________
Correct Question (2) :- if lmn = 1 , then prove that, 1/{1 + l + m^(-1)} + 1/{1 + m + n^(-1)} + 1/{1 + n + l^(-1)} = 1 ?
Solution :-
→ 1/{1 + l + m^(-1)} + 1/{1 + m + n^(-1)} + 1/{1 + n + l^(-1)} = 1
Solving Each part of LHS seperately,
First Part :- 1/{1 + l + m^(-1)}
→ 1/{1 + l + m^(-1)}
Multiply numerator and denominator by m ,
→ m * 1 / m * {1 + l + m^(-1)}
→ m / (m + lm + 1)
→ m/(lm + m + 1)
Second Part :- 1/{1 + m + n^(-1)}
→ 1/{1 + m + n^(-1)}
→ 1/{1 + m + (1/n)}
Now, we have given that, lmn = 1
So, lm = (1/n)
Putting value now,
→ 1/(1 + m + lm)
→ 1/(lm + m + 1)
Third Part :- 1/{1 + n + l^(-1)}
→ 1/{1 + n + l^(-1)}
Again, using lmn = 1 ,
So, n = (1/lm)
putting value now,
→ 1/{ 1 + (1/lm) + (1/l)}
→ 1/{(lm + 1 + m) / lm}
→ lm/(lm + m + 1)
Now, Putting all three parts we get :-
→ 1/{1 + l + m^(-1)} + 1/{1 + m + n^(-1)} + 1/{1 + n + l^(-1)}
→ {m/(lm + m + 1)} + {1/(lm + m + 1)} + {lm/(lm + m + 1)}
Taking LCM now,
→ {(m + 1 + lm) /(lm + m + 1)}
→ { (lm + m + 1)} / (lm + m + 1) }
→ 1 = RHS . (Proved).
____________________
Given : lmn=2,
To Find : prove that (1/2+l+2m^-1)+(2^-1/1+m+n^-1)+(2^-1/1+n+2l^-1)=1/2
Solution:
lmn=2
1/(2+l+2m⁻¹)
=(1/(2 + l + 2/m)
= m/(2m + lm + 2)
2⁻¹/(1+m+n⁻¹)
= 1/(2 + 2m + 2/n)
2/n = lm
= 1/(2 + 2m +lm)
2⁻¹/(1+n+2l⁻¹)
1/(2 + 2n + 4/l)
= (1/2)/(1 + n + 2/l)
= (lm/2)/(lm + lmn + 2m)
= (lm/2)/(lm + 2 + 2m)
Adding all
(m + 1 + (lm/2) ) / ( (lm + 2 + 2m)
= ((2m + 2 + lm)/2 ) / ( (lm + 2 + 2m)
= 1/2
= RHS
Learn more:
'abc' is equal to?
https://brainly.in/question/2622741