Math, asked by siddhant11th, 1 month ago

If ln(3 sin x – 4 cos x + 7 + 5y) = (sin x)y then find y'(pi)

Answers

Answered by anvitanvar032
1

Answer:

The correct answer of this question is \frac{dy}{dx} = \frac{3cosx - 4sinx - x}{5y}

Step-by-step explanation:

Given - ln(3 sin x – 4 cos x + 7 + 5y) = (sin x)y

To Find -  Find  y'(pi)

An integral is a mathematical concept that describes how infinitesimal data may result in displacement, area, volume, and other concepts. Integral location is the process of integration.

Now, according to the question -

3sinx - 4cos + 7 + 5y dx

-3cosx - 4sinx + x + 5y × \frac{dy}{dx} dx

-3cosx + 4sinx + x +5y ×\frac{dy}{dx} dx

- 3cosx + 4sinx + x + 5y × \frac{dy}{dx}

\frac{dy}{dx} = \frac{3cosx - 4sinx - x}{5y}

So, the value of  y'(pi) is \frac{dy}{dx} = \frac{3cosx - 4sinx - x}{5y}

#SPJ2

Similar questions