Math, asked by drthdate148, 9 months ago

If log (0.0007392)=-3.1313 , then find log(73.92)

Answers

Answered by mad210203
4

Given:

Given value is, log (0.0007392)=-3.1313.

To find:

We should find the value of log(73.92).

Solution:

We can find the value of log(73.92), by doing some manipulations in given value.

Consider the given value,

\Rightarrow log (0.0007392)=-3.1313

Now, multiply with 100000 and divide with 100000 to the 0.0007392.

\Rightarrow log (0.0007392\times \frac{100000}{100000} )=-3.1313

Multiplying the terms,

\Rightarrow log ( \frac{0.0007392\times100000}{100000} )=-3.1313

Simplifying the terms,

\Rightarrow log ( \frac{73.92}{100000} )=-3.1313

We know that, log\frac{a}{b} =log\ a-log\ b.

Now apply the above formula.

\Rightarrow log \ {73.92}-log\ {100000}=-3.1313

Rearranging the terms,

\Rightarrow log \ {73.92}=-3.1313+log\ {100000}

\Rightarrow log \ {73.92}=-3.1313+log\ {10^5}

We know that, log\ a^m = m\ log\ a.

\Rightarrow log \ {73.92}=-3.1313+5\ log\ {10}

But the value of log \ 10 is equal to 1.

\Rightarrow log \ {73.92}=-3.1313+5\times1

Simplifying the terms,

\Rightarrow log \ {73.92}=-3.1313+5

\Rightarrow log \ {73.92}=1.8687

Hence, we got the required value.

Therefore, the value of log \ {73.92} is equal to 1.8687.

Answered by pulakmath007
44

SOLUTION

GIVEN

log (0.0007392) = - 3.1313

TO DETERMINE

log(73.92)

FORMULA TO BE IMPLEMENTED

We are aware of the formula on logarithm

 \sf{}1. \:  \:  \log (ab) =  \log a \:  +  \log b

 \sf{}2. \:  \:  \log( {a}^{m} ) = m \log a

EVALUATION

Here it is given that

 \sf{} \log (0.0007392) =  - 3.1313 \:  \:  \: ......(1)

Now

 \sf{}   \log (73.92)

 =  \sf{}   \log (0.0007392 \times  {10}^{5} )

 =  \sf{} \log (0.0007392 ) +  \log  ({10}^{5} ) \:  \: using \: formula \: 1

 =  \sf{} \log (0.0007392 ) + 5 \log  ({10} ) \:  \:( using \: formula \: 2)

 =  \sf{} \log (0.0007392 ) +  5 \:  \: ( \because \log(10) = 1)

 \sf{} =  - 3.1313 + 5

 \sf{} = 1.8687

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

log₁₀(10.01),Find approximate value.

https://brainly.in/question/5598224

Similar questions