Math, asked by Anonymous, 10 months ago

If log 10 a=x, log 10 b=y and log 10 c=z. Express P in terms of a, b and c if log 10 P=3x-5y+2z

Answers

Answered by Mysterioushine
2

given \:  log_{a}10  = x \: and \:  log_{b}10 = y \:  \: and \:  log_{c}10  = z \\  \\  =  >   \frac{1}{x}   =  log_{10}(a)  \:  \:  \: and \:  \:  log_{10}(b)  =  \frac{1}{y}  \:  \: and \:  log_{c}(10 )  =  \frac{1}{c}  \\  \\  =  >  {3x - 5y + 2z}   \\  \\  =  \frac{1}{3 log_{10}(a) -  5log_{10}(b)  + 2 log_{10}(c)  }  \\  \\  =  \frac{1}{ log_{10}(a {}^{3} ) -  log_{10}(b {}^{5} )  +  log_{10}(c {}^{2} )  }  \:  \:  \: ( log_{b}(a {}^{m} )  = m log_{b}(a) ) \\  \\   =  \frac{1}{ log_{10}(a {}^{3}c {}^{2}  )  -  log_{10}(b {}^{5} ) }  \:  \:  \:  \: ( log_{b}(a)  +  log_{b}(c)  =  log_{b}(ac) ) \\  \\  =  \frac{1}{ log_{10}( \frac{a {}^{3}c {}^{2}  }{b {}^{5} } ) }  \:  \: ( log_{c}(a)  -  log_{c}(b)  =  log_{c}( \frac{a}{b} ) ) \\  \\  =   log_{ \frac{a {}^{3}c {}^{2}  }{b {}^{5} } }(10)  \\  \\ given \:  log_{10}(p)  = 3x - 5y + 2z \\  \\  =  >  log_{10}(p)  =  \frac{1}{ log_{10}( \frac{a {}^{3}c {}^{2}  }{b {}^{5} } ) }  \\  \\  since \: bases \: are \: equal \:  \\  \\  =  > p =   \frac{1}{ \frac{a {}^{3}c {}^{2}  }{b {}^{5} } }   \\  \\  =  > p =  \frac{b {}^{5} }{a {}^{3}c {}^{2}  }

Similar questions