Math, asked by viditb30, 1 year ago

If log 2 = 0.3010 and log 3 = 0.4771, the value of log5 512

Answers

Answered by irramrocks24
29
3.875 is the answer 
log512÷log5 
log2^{9} ÷㏒(10÷2)
9㏒2÷ ㏒10 - ㏒2
9 * 0.3010 / 1 - 0.3010 (rules of logarithms log 10 = 1)
2.709 ÷ 0.699
shift the decimal places 
2709/699
3.876 
Answered by pinquancaro
34

The value is \log_5 512=3.8755

Step-by-step explanation:

Given : If \log 2 = 0.3010 and \log 3 = 0.4771

To find : The value of \log_5 512 ?

Solution :

Expression \log_5 512

Apply logarithmic property, \log_b a=\frac{\log a}{\log b}

\log_5 512=\frac{\log 512}{\log 5}

\log_5 512=\frac{\log 2^9}{\log (\frac{10}{2})}

Apply logarithmic property, \log a^x=x\log a and \log (\frac{a}{b})=\log a-\log b

\log_5 512=\frac{9\log 2}{\log 10-\log 2}

Substitute the value,

\log_5 512=\frac{9(0.3010)}{1-0.301}

\log_5 512=\frac{2.709}{0.699}

\log_5 512=3.8755

Therefore, the value is \log_5 512=3.8755

#Learn more

If log 2 = 0.3010 and log 3 = 0.4771, the value of log5 512 is:

https://brainly.in/question/5180344

Similar questions