Math, asked by davanakh30, 9 months ago

If log 25=a , log225=b, prove that log (1\9^2)+log (1\2250)=2a-3b-1

Answers

Answered by amitnrw
4

Given :    log 25=a , log225=b,

To find : show that log (1/9²)+log (1/2250)  = 2a-3b-1

Solution:

log 25=a

log225=b

=> log 25 * 9  = b

=> log 25 + log 9  = b

=>  a  +  log 9  = b

=>  b - a =  log 9  

log (1/9²)+log (1/2250)

= log 1  -  log 9²   +  log 1  -  log 2250

= 0 -  2 log 9  +  0  -  log (225 * 10)

=  - 2(b - a)  - (log 225 + log 10)

= - 2b + 2a   - (b + 1)

=  - 2b + 2a  - b - 1

= 2a - 3b - 1

= RHS

QED

Hence proved

log (1/9²)+log (1/2250)  = 2a-3b-1

Learn more:

Number of real solution of the equation [tex]sqrt{log_{10}(-x)} = log ...

https://brainly.in/question/9443251

if log, 1/3=1/3 then which is the correct value of x? - Brainly.in

https://brainly.in/question/9062573

Without using log table, prove the following: i) [tex]rac{1}{4 ...

https://brainly.in/question/7853487

Similar questions
Math, 1 year ago