If log 256 base 4+ log 81 base 3- log X base 2=0 then X= ?
Answers
Given :-
To Find :-
We have to find the value x
Solution:-
Now ,
Now similarly ,
Now ,
- we have to find the value of x
Step-by-step explanation:
Given :-
\sf\ \ log_4^{256} + log_3^{81}-log_2^x=0 log
4
256
+log
3
81
−log
2
x
=0
To Find :-
We have to find the value x
Solution:-
Now ,
\begin{gathered}\sf\ \ log_a^b= x \\ \\ :\implies\ a=b^x\end{gathered}
log
a
b
=x
:⟹ a=b
x
Now similarly ,
\begin{gathered}:\implies\sf\ log_4^{256}= a\\ \\ \\ :\implies\sf\ 256=4^a\\ \\ \\ :\implies\sf\ (4)^4=4^a\\ \\ \\ :\implies\underline{\boxed{\sf\ a=log_4^{256}=4}}\end{gathered}
:⟹ log
4
256
=a
:⟹ 256=4
a
:⟹ (4)
4
=4
a
:⟹
a=log
4
256
=4
\begin{gathered}:\implies\sf\ log_3^{81}= b\\ \\ \\ :\implies\sf\ 81=3^a\\ \\ \\ :\implies\sf\ (3)^4=3^b\\ \\ \\ :\implies\underline{\boxed{\sf\ b=log_3^{81}=4}}\end{gathered}
:⟹ log
3
81
=b
:⟹ 81=3
a
:⟹ (3)
4
=3
b
:⟹
b=log
3
81
=4
\begin{gathered}:\implies\sf\ log_2^{x}= c\\ \\ \\ :\implies\sf\ x=2^c\\ \\ \\ :\implies\underline{\boxed{\sf\ x=log_2^{x}=2^c}}\end{gathered}
:⟹ log
2
x
=c
:⟹ x=2
c
:⟹
x=log
2
x
=2
c
\underline{\bigstar{\red{\sf\ x=2^c}}}
★ x=2
c
Now ,
\begin{gathered}\dashrightarrow\sf \ log_4^{256} + log_3^{81}-log_2^x=0\\ \\ \\ \dashrightarrow\sf\ 4+4-2^c=0\\ \\ \\ \dashrightarrow\sf\ 8-2^c=0\\ \\ \\ \dashrightarrow\sf\ 8=2^c\\ \\ \\ \dashrightarrow\sf\ (2)^3=2^c\\ \\ \\ \dashrightarrow\underline{\boxed{\sf\ c=3}}\end{gathered}
⇢ log
4
256
+log
3
81
−log
2
x
=0
⇢ 4+4−2
c
=0
⇢ 8−2
c
=0
⇢ 8=2
c
⇢ (2)
3
=2
c
⇢
c=3
we have to find the value of x
\begin{gathered}\implies\sf\ \ x= 2^c\\ \\ \\ :\implies\sf\ x=(2)^3\ \ \ \ [c=3]\\ \\ \\ :\implies\underline{\boxed{\blue{\sf\ x=8}}}\end{gathered}
⟹ x=2
c
:⟹ x=(2)
3
[c=3]
:⟹
x=8
- thanks