Math, asked by bhumipatoliya2606, 1 year ago

If log√27 x= 5 1/3,the value of x is:(where log=0.4771)


KanikAb: Log3=0.47712 ] thnk

Answers

Answered by kishanpentyala
2

 log( \sqrt{27}x)  = 5 \frac{1}{3}   \\  log(3x)  =  \frac{16}{3}  \\  log(3)  +  log(x)  =  \frac{16}{3}  \\  log(x)  =  \frac{16}{3} -  log(3)  \\  \:  \:  \:  \:   \:  \:  \:  \:   \:  \:  \:   \:  \:  = 5.3333 - 0.4771 = 4.8562
Answered by SaurabhJacob
0

Given:

log√27 x= 5 1/3

To Find:

The value of x

Solution:

log√27 x = log(27x)^{1/2}

                =1/2×(log27x)    (∴ logb^{a} = alogb )

                 =1/2(log27+logx)  (∴logab = loga+ logb)

                 =1/2(log3³+logx)

                 =1/2(3log3+logx)

                 =(3/2log3)+(1/2logx)

                =0.705+1/2logx

According to question

log√27 x= 5 1/3

⇒0.705+1/2logx = 16/3

⇒0.705+1/2logx = 5.33

⇒1/2logx = 4.625

⇒logx = 9.25      

⇒x = 10^{9.25}

Hence, the value of x  is  10^{9.25}

Similar questions