If log (5x-9) - log (x+3)= log 2 then x= ?
Answers
Answered by
1
Answer:
The value of x is 5.
Explanation:
Given equation : \log (5x-9)-\log (x+3)= \log2log(5x−9)−log(x+3)=log2 (1)
According to the properties of logarithm , \log a-\log b=\log \dfrac{a}{b}loga−logb=log
b
a
So , \log (5x-9)-\log (x+3)=\log(\dfrac{5x-9}{x+3})log(5x−9)−log(x+3)=log(
x+3
5x−9
)
Put this in (1) , we get
\log(\dfrac{5x-9}{x+3}) =\log 2log(
x+3
5x−9
)=log2
\Rightarrow\ \dfrac{5x-9}{x+3}=2⇒
x+3
5x−9
=2 [ if \log a=\log b\Rightarrow\ a=bloga=logb⇒ a=b ]
\Rightarrow\ 5x-9=2(x+3)⇒ 5x−9=2(x+3)
\Rightarrow\ 5x-9=2x+6⇒ 5x−9=2x+6
\Rightarrow\ 5x-2x=6+9⇒ 5x−2x=6+9
\Rightarrow\ 3x=15⇒ 3x=15
\Rightarrow\ x=5⇒ x=5
Hence, the value of x is 5.
Step-by-step explanation:
hope it maybe helpful for you
Similar questions