Math, asked by Mrsingh6906, 1 year ago

If log (5x-9)-log (x+3)= log2 then x=

Answers

Answered by ihrishi
31

Answer:

log (5x-9)-log (x+3)= log2 \\  \therefore \: log \frac{(5x-9)}{(x+3)}  = log2 \\ \therefore \:  \frac{(5x-9)}{(x+3)}  = 2  \\ \therefore \: (5x-9) = 2(x + 3) \\ \therefore \: 5x-9 = 2x + 6 \\ \therefore \: 5x-2x = 6 + 9 \\  \therefore \: 3x= 15\\ \therefore \: x=  \frac{15}{3} \\   \huge \fbox{\therefore \: x=5}

Answered by JeanaShupp
11

The value of x is 5.

Explanation:

Given equation : \log (5x-9)-\log (x+3)= \log2   (1)

According to the properties of logarithm , \log a-\log b=\log \dfrac{a}{b}

So , \log (5x-9)-\log (x+3)=\log(\dfrac{5x-9}{x+3})

Put this in (1) , we get

\log(\dfrac{5x-9}{x+3}) =\log 2  

\Rightarrow\ \dfrac{5x-9}{x+3}=2[ if \log a=\log b\Rightarrow\ a=b ]

\Rightarrow\ 5x-9=2(x+3)

\Rightarrow\ 5x-9=2x+6

\Rightarrow\ 5x-2x=6+9

\Rightarrow\ 3x=15

\Rightarrow\ x=5

Hence, the value of x is 5.

# Learn more :

Log(x+4)-log(x-4)=log2

https://brainly.in/question/5607943

Similar questions