Math, asked by pranjalrai1326, 8 months ago


If log 8 = 0.9030, find the value of
(b) log 2000
(a) log 64

Answers

Answered by shadowsabers03
9

We have the identities,

  • \log(ab)=\log a+\log b\quad\quda\dots(i)
  • \log(a^b)=b\log a\quad\quad\dots(ii)

Given,

\longrightarrow \log8=0.9030

\longrightarrow \log(2^3)=0.9030

By (ii),

\longrightarrow 3\log2=0.9030

\longrightarrow \log2=\dfrac{0.9030}{3}

\longrightarrow \log2=0.3010

Here,

\longrightarrow \log(2000)=\log(2\times1000)

\longrightarrow \log(2000)=\log(2\times10^3)

By (i),

\longrightarrow \log(2000)=\log(2)+\log(10^3)

\longrightarrow \log(2000)=0.3010+\log(10^3)

By (ii),

\longrightarrow \log(2000)=0.3010+3\log10

Since \log10=1,

\longrightarrow \log(2000)=0.3010+3\times1

\longrightarrow \log(2000)=0.3010+3

\longrightarrow\underline{\underline{\log(2000)=3.3010}}

And,

\longrightarrow\log(64)=\log(8^2)

\longrightarrow\log(64)=2\log(8)

\longrightarrow\log(64)=2\times0.9030

\longrightarrow\underline{\underline{\log(64)=1.8060}}

Similar questions