Math, asked by gen06, 10 months ago

if log 8 base x + log 8 base 1/ 6 = 1 /3 then the value of x​

Answers

Answered by Anonymous
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=12}}}

\pink{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\bold{Given :}

 log_{8}(x)  \times  log_{8}( \frac{1}{6} )  =  \frac{1}{3}  \\ ⇛  log(x)  \times  \frac{1}{6}  =  \frac{1}{3}

\bold\red{According\:to\:logarithmic\:law}

 log_{a}(m)  +  log_{a}(n)  =  log_{a}(nm)  \\ ⇛ log_{8}( \frac{x}{6} )   =  \frac{1}{3} \\ ⇛ \frac{x}{6}  =  {8}^{ \frac{1}{3} }

Since,

if \:  \:  log_{a}( N)  = x \: ⇛N =   {a}^{x}  \\ ⇛x = 6 \times  {( {2}^{3} )}^{ \frac{1}{3} }  \\ ⇛x = 6 \times 2 \\ ⇛x = 12

Answered by bson
0

Step-by-step explanation:

log 8/ logx + log8/ log ⅙ =1/3

log 8/log x - log 8/ log 6 =1/3

log6- logx / logx log6=1/3log8

Similar questions