Math, asked by ramireddy1950, 9 months ago

If log 81 base 12 =x,then log 3 base 6= A)x/x+4 B)x+4/x C)2x/x+4 D)x+4/2x

Answers

Answered by pulakmath007
17

SOLUTION

TO CHOOSE THE CORRECT OPTION

If log 81 base 12 =x , then log 3 base 6

A)x/x+4

B)x+4/x

C)2x/x+4

D)x+4/2x

EVALUATION

Here it is given that

 \displaystyle \sf{ log_{12}(81)  = x}

 \displaystyle \sf{  \implies \: log_{12}( {3}^{4} )  = x}

 \displaystyle \sf{  \implies \:4 log_{12}(3 )  = x}

 \displaystyle \sf{  \implies \: log_{12}(3 )  =  \frac{x}{4} }

 \displaystyle \sf{  \implies \: log_{3}(12 )  =  \frac{4}{x} }

 \displaystyle \sf{  \implies \: log_{3}(3 \times 4 )  =  \frac{4}{x} }

 \displaystyle \sf{  \implies \: log_{3}(3  )  +  log_{3}(4)  =  \frac{4}{x} }

 \displaystyle \sf{  \implies \: 1  +  log_{3}(4)  =  \frac{4}{x} }

 \displaystyle \sf{  \implies \:  log_{3}(4)  =  \frac{4}{x}  - 1}

 \displaystyle \sf{  \implies \:  log_{3}( {2}^{2} )  =  \frac{4 - x}{x} }

 \displaystyle \sf{  \implies \: 2 log_{3}( 2 )  =  \frac{4 - x}{x} }

 \displaystyle \sf{  \implies \:  log_{3}( 2 )  =  \frac{4 - x}{2x} }

Now

 \displaystyle \sf{  log_{6}( 3)   }

 \displaystyle \sf{  =  \frac{1}{ log_{3}( 6) }   }

 \displaystyle \sf{  =  \frac{1}{ log_{3}( 3 \times 2) }   }

 \displaystyle \sf{  =  \frac{1}{ log_{3}( 3 )  +  log_{3}(2) }   }

 \displaystyle \sf{  =  \frac{1}{ 1  +  log_{3}(2) }   }

 \displaystyle \sf{  =  \frac{1}{ 1  +  \frac{4 - x}{2x}  }   }

 \displaystyle \sf{  =  \frac{1}{   \frac{2x + 4 - x}{2x}  }   }

 \displaystyle \sf{  =  \frac{1}{   \frac{x + 4 }{2x}  }   }

 \displaystyle \sf{  =  \frac{2x}{   x + 4 }   }

FINAL ANSWER

Hence the correct option is

 \displaystyle \sf{ C) \:  \:  \:  \frac{2x}{   x + 4 }   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Answered by subptplayroblox
0

Answer:

2x/x+4

I hope I helped you have a good day :)

Attachments:
Similar questions