Math, asked by ganniprateek, 11 months ago

If log 9(18) = x+1 then log 9(24) is equal to

Answers

Answered by MaheswariS
0

\textbf{Given:}

\log_{9}18=x+1

\textbf{To find:}

\text{The value of $\log_{9}24$}

\textbf{Solution:}

\text{Consider,}

\log_{9}18=x+1

\implies\,9^{x+1}=18

\implies\,9^{x}=2

\implies\,(3^2)^{x}=2

\implies\,3^{2x}=2

\implies\bf\,3=2^{\frac{1}{2x}}

\text{Now,}

\text{Let}\;\log_{9}(24)=y

\implies\,9^y=24

\implies\,(3^2)^y=24

\implies\,3^{2y}=3{\times}2^3

\implies\,3^{2y-1}=2^3

\implies\,(2^{\frac{1}{2x}})^{2y-1}=2^3

\implies\(2^{\frac{2y-1}{2x}}=2^3

\text{Equating powers on both sides we get}

\dfrac{2y-1}{2x}=3

\implies\,2y-1=6x

\implies\,2y=6x+1

\implies\,y=\dfrac{6x+1}{2}

\implies\bf\,log_{9}24=\dfrac{6x+1}{2}

\therefore\textbf{The value of $\bf\,log_{9}24$ is $\bf\dfrac{6x+1}{2}$}

Find more:

Expand log 243 to the base 3 root 3

https://brainly.in/question/4637472#

Expand log120/49

https://brainly.in/question/15415039

Evaluate log2 ^150 interms of x and y such that logo2 ^3=x and logo 2^5=y

https://brainly.in/question/16242429

Similar questions