Math, asked by supradeepanandp74n7b, 1 year ago

if log a+b/3 = 1/2 (loga+logb) then a/b+b/a is

Answers

Answered by vidhi20oct
56

log[a+b/3]=1/2[loga+logb]

2log[a+b/3]=log[ab]

log[a+b/3]^2=log[ab]

[a+b]^2/9=ab

a^2+b^2+2ab=9ab

a^2+b^2=7ab

dividing by ab

a/b+b/a=7

hope it helps ❤️


Anonymous: Nyc01
supradeepanandp74n7b: thankaa
snehasreni7: Thank u 4 the ans.
vidhi20oct: welcome
Answered by dikshaagarwal4442
5

Answer:

   \frac{a}{b} + \frac{b}{a} = 7

Step-by-step explanation:

  • Given , log(\frac{a + b}{3}) = \frac{1}{2} log(a + b)

                   2 log(\frac{a + b}{3}) = log(a + b)..................(i)

  • Now  2 log(\frac{a + b}{3}) = log (\frac{a + b}{3})²    [ as we know log(x^a) = a × log(x)]

                                  = log(\frac{a^{2} +2ab + b^{2} }{9})

  • log(a + b) = log(a.b)
  • Putting the values in equation (i) we get,

                  log(\frac{a^{2} +2ab + b^{2} }{9}) = log(a.b)

                    \frac{a^{2} +2ab + b^{2} }{9} = ab

                    a² + 2ab + b² = 9ab

                    a² + b² = 9ab - 2ab

                      a² + b²   = 7ab

                      \frac{a^{2} }{ab} + \frac{b^{2} }{ab} = 7 [both sides divided by ab]

                     \frac{a}{b} + \frac{b}{a} = 7

Similar questions