if log (a+b/4) =1/2 log ( ab), show that a² + b² = 14ab
Answers
EXPLANATION.
To prove.
⇒ ㏒(a + b/4) = 1/2㏒(ab).
⇒ a² + b² = 14ab. [Given].
As we know that,
Formula of :
⇒ (a + b)² = a² + b² + 2ab.
⇒ (a + b)² = 14ab + 2ab.
⇒ (a + b)² = 16ab.
Taking log on both sides of the equation, we get.
⇒ ㏒[(a + b)²] = ㏒(16ab).
As we know that,
Formula of :
⇒ ㏒ₐ(MN) = ㏒ₐM + ㏒ₐN.
⇒ ㏒ₐα^(β) = β㏒ₐα. (β > 0).
Using this formula in the equation, we get.
⇒ 2㏒(a + b) = ㏒(16) + ㏒(a) + ㏒(b).
⇒ 2㏒(a + b) = ㏒(4)² + ㏒(a) + ㏒(b).
⇒ 2㏒(a + b) = 2㏒(4) + ㏒(a) + ㏒(b).
⇒ 2㏒(a + b) - 2㏒(4) = ㏒(a) + ㏒(b).
As we know that,
Formula of :
⇒ ㏒ₐM/N. = ㏒ₐM - ㏒ₐN.
Using this formula in the equation, we get.
⇒ 2[㏒(a + b) - ㏒(4)] = ㏒(a) + ㏒(b).
⇒ 2[㏒(a + b)/4] = ㏒(a) + ㏒(b).
⇒ ㏒(a + b)/4 = 1/2[㏒(a) + ㏒(b)].
⇒ (a + b)/4 = 1/2 ㏒(ab).
Hence Proved.
Method = 2.
⇒ ㏒(a + b/4) = 1/2㏒(ab). [Given].
To prove.
⇒ a² + b² = 14ab.
As we know that,
We can write equation as,
⇒ 2㏒(a + b/4) = ㏒(ab).
⇒ ㏒(a + b/4)² = ㏒(ab).
⇒ (a + b/4)² = (ab).
⇒ [a² + b² + 2ab/16] = ab.
⇒ a² + b² + 2ab = 16ab.
⇒ a² + b² = 16ab - 2ab.
⇒ a² + b² = 14ab.
Hence Proved.
Answer:
To prove.
⇒ ㏒(a + b/4) = 1/2㏒(ab).
⇒ a² + b² = 14ab. [Given].
As we know that,
Formula of :
⇒ (a + b)² = a² + b² + 2ab.
⇒ (a + b)² = 14ab + 2ab.
⇒ (a + b)² = 16ab.
Taking log on both sides of the equation, we get.
⇒ ㏒[(a + b)²] = ㏒(16ab).
As we know that,
Formula of :
⇒ ㏒ₐ(MN) = ㏒ₐM + ㏒ₐN.
⇒ ㏒ₐα^(β) = β㏒ₐα. (β > 0).
Using this formula in the equation, we get.
⇒ 2㏒(a + b) = ㏒(16) + ㏒(a) + ㏒(b).
⇒ 2㏒(a + b) = ㏒(4)² + ㏒(a) + ㏒(b).
⇒ 2㏒(a + b) = 2㏒(4) + ㏒(a) + ㏒(b).
⇒ 2㏒(a + b) - 2㏒(4) = ㏒(a) + ㏒(b).
As we know that,
Formula of :
⇒ ㏒ₐM/N. = ㏒ₐM - ㏒ₐN.
Using this formula in the equation, we get.
⇒ 2[㏒(a + b) - ㏒(4)] = ㏒(a) + ㏒(b).
⇒ 2[㏒(a + b)/4] = ㏒(a) + ㏒(b).
⇒ ㏒(a + b)/4 = 1/2[㏒(a) + ㏒(b)].
⇒ (a + b)/4 = 1/2 ㏒(ab).
Hence Proved.
Method = 2.
⇒ ㏒(a + b/4) = 1/2㏒(ab). [Given].
To prove.
⇒ a² + b² = 14ab.
As we know that,
We can write equation as,
⇒ 2㏒(a + b/4) = ㏒(ab).
⇒ ㏒(a + b/4)² = ㏒(ab).
⇒ (a + b/4)² = (ab).
⇒ [a² + b² + 2ab/16] = ab.
⇒ a² + b² + 2ab = 16ab.
⇒ a² + b² = 16ab - 2ab.
⇒ a² + b² = 14ab.
Hence Proved.