if log (a/b-c) = log (b/c-a) = log (c/a-b),prove abc=1
Answers
Answered by
1
Answer:
logab−c=logbc−a=logca−b=klogab−c=logbc−a=logca−b=k
logab−c=k⟹a=e(b−c)klogab−c=k⟹a=e(b−c)k
logbc−a=k⟹b=e(c−a)klogbc−a=k⟹b=e(c−a)k
logca−b=k⟹c=e(a−b)klogca−b=k⟹c=e(a−b)k
Hence,
aabbcc=(e(b−c)k)a(e(c−a)k)b(e(a−b)k)caabbcc=(e(b−c)k)a(e(c−a)k)b(e(a−b)k)c
=(ea(b−c)k)(eb(c−a)k)(ec(a−b)k)=(ea(b−c)k)(eb(c−a)k)(ec(a−b)k)
=ea(b−c)k+b(c−a)k+c(a−b)k=ea(b−c)k+b(c−a)k+c(a−b)k
=e(ab−ac+bc−ab+ac−bc)k=e(ab−ac+bc−ab+ac−bc)k
=e0=e0
=1=1
Step-by-step explanation:
Similar questions