if log a /b-c =log b/c-a=log c /a-b, then find the value of abc . also prove that a^a. b^b.c^c=1,(a,b>0)
please answer this question it's urgent.
I will mark as brainliest.
inventorscientist:
hi gita
Answers
Answered by
14
logab−c=logbc−a=logca−b=klogab−c=logbc−a=logca−b=k
logab−c=k⟹a=e(b−c)klogab−c=k⟹a=e(b−c)k
logbc−a=k⟹b=e(c−a)klogbc−a=k⟹b=e(c−a)k
logca−b=k⟹c=e(a−b)klogca−b=k⟹c=e(a−b)k
Hence,
aabbcc=(e(b−c)k)a(e(c−a)k)b(e(a−b)k)caabbcc=(e(b−c)k)a(e(c−a)k)b(e(a−b)k)c
=(ea(b−c)k)(eb(c−a)k)(ec(a−b)k)=(ea(b−c)k)(eb(c−a)k)(ec(a−b)k)
=ea(b−c)k+b(c−a)k+c(a−b)k=ea(b−c)k+b(c−a)k+c(a−b)k
=e(ab−ac+bc−ab+ac−bc)k=e(ab−ac+bc−ab+ac−bc)k
=e0=e0
=1=1
hope it help mark as brainliest
logab−c=k⟹a=e(b−c)klogab−c=k⟹a=e(b−c)k
logbc−a=k⟹b=e(c−a)klogbc−a=k⟹b=e(c−a)k
logca−b=k⟹c=e(a−b)klogca−b=k⟹c=e(a−b)k
Hence,
aabbcc=(e(b−c)k)a(e(c−a)k)b(e(a−b)k)caabbcc=(e(b−c)k)a(e(c−a)k)b(e(a−b)k)c
=(ea(b−c)k)(eb(c−a)k)(ec(a−b)k)=(ea(b−c)k)(eb(c−a)k)(ec(a−b)k)
=ea(b−c)k+b(c−a)k+c(a−b)k=ea(b−c)k+b(c−a)k+c(a−b)k
=e(ab−ac+bc−ab+ac−bc)k=e(ab−ac+bc−ab+ac−bc)k
=e0=e0
=1=1
hope it help mark as brainliest
Answered by
33
Hlo mate your solution
Attachments:
Similar questions