Math, asked by sriramramu, 1 year ago

if log(a-b)-log(a+b)=logb/a, find a^2/b^2+b^2/a^2

Answers

Answered by gohan
1
loga²/b²+logb²/a²
loga/b=loga-logb
loga²-logb²+logb²-loga²=0

Answered by shubhshubham14
1

Answer:

6

Step-by-step explanation:

log(a-b) - log(a+b)=log(b/a)

log((a-b)/(a+b))=log(b/a)

Taking Antilog both side

(a-b)/(a+b) =(b/a)

a(a-b)=b(a+b)

a^{2} -ab=b^{2}+ab

a^{2}-b^{2}=2ab

Squaring both side

a^{4}+b^{4}-2a^{2}b^{2} = 4a^{2}b^{2}

a^{4} + b^{4} = 6a^{2}b^{2}

(a^{4}+b^{4})/a^{2}b^{2} = 6     ----(i)

Given

a^{2}/b^{2} + b^{2}/a^{2}  =  (a^{4}+b^{4})/a^{2}b^{2}    ----(ii)

From (i) and (ii)

a^{2}/b^{2} + b^{2}/a^{2} = 6

Similar questions